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ABSTRACT

This report describes and evaluates the design and use of

a simple manual space navigation computer. This com-

puter is intended to provide backup guidance capability

under abort conditions during an advanced manned space

mission.

A design study with an evaluation of the accuracy of the

various cemponents used in the computer is presented.

A detailed accuracy analysis has been performed by

simulation techniques. The overall accuracy of the

manual space navigation computer is presented showing

the results of the study for various abort trajectories.

Significant relationships between accuracy and the

operational usage of the manual computer have been

developed. __)



1. INTRODUCTION

1.1 General

Advanced manned space missions impose ever increasing demands

for complexity of the primary navigation and guidance systems such as the

need for highly versatile dig!ta] computers. This, together with the use of

longer duration mission times, imposes perhaps an unrealistically severe

reliability requirement on the space navigation and guidance equipment.

One approach to solving this reliability problem is the use of

simple and highly reliable backup equipment to supplement the primary

navigation system. The philosophy that permits the backup system to be

very simple is (1) to make use of manual operations as opposed to more

complex automatic techniques and (2) limiting the function of the backup

equipment to only what is necessary to achieve recovery of the crew.

The manual space navigation computer which has been studied

under this contract incorporates this philosophy. The inputs to the

computer are vehicle position data obtained by sextant observations.

These are manually obtained and inserted into the computer. The com-

puter determines the "vacuum perigee" of the space vehicle trajectory

which establishes whether or not a safe recovery back to earth will be

achieved. If the vacuum perigee is outside the allowable "reentry corridor",

the computer is then used to determine the corrective maneuver necessary

for safe reentry.

I. 2 Scope of the Study

The scope of the work performed under this contract and which

is presented in this report is as follows:

A design study of the manual computer was performed to arrive

at a functional configuration of components and overall design. The com-

ponents were studied to specify reasonable performance tolerances.

A detailed error analysis program was prepared for high-speed

digital computation. Twenty-four cases were examined based upon:

1. The performance capability of the components in the manual com-

puter developed from the design studies.

1-1



2. Abort trajectories furnished Arma by Ames Research

Center, N.A.S.A.

3. Various locations for taking the space vehicle position

data along the abort trajectories.

The error analysis also included the effects of errors in the

manual sextant observations and the theoretical errors inherent in the

approach used in the computer. The theoretical errors are (I) the

two body vs. four body and earth oblateness assumption used In com-

puting the vacuum perigee and (2) the assumption of a parabolic trajectory

in computing the corrective maneuver.

The results of the simulations were evaluated to establish the

overall accuracy capability of the manual space navigation computer and to

generally relate locations along the trajectory where sextant observations are

made. All the accuracy results are presented as R. M.S. or I _ errors.

I. 3 Summary of the Accuracy Analysis Results

The results of the accuracy analysis of the manual space navigation

computer are as follows:

I. The overall total error (i OW) in achieving perigee varies from

16 km for an early abort trajectory ( _ = 0. 8) to 35 km for a near parabolic

trajectory. These results are based on the following assumptions:

a. Three sextant observations of position have been obtained.

The use of additional redundant, readings should statisti-

cally improve the accuracy. However, this has not been

included in the analysis.

b. The first observation is taken shortly after abort or, in the

case of a near parabolic abort trajectory, at 260_ 000 km

from the earth.

c. The corrective maneuver is performed about I/2 hour

before perigee.

d. The last observation is taken about I/2 hour before the

corrective maneuver.
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e. The second or middle observation is taken at a sweep

angle roughly halfway between the first and third observa-

tion.

2. The accuracy degrades significantly if the first observation is

taken later or if the third observation is taken earlier.

3. The major causes of error are instrumentation errors of the

manual computer. These contribute about eight times as much error in

perigee radius as do the input data errors from the sextant observations.

4. The theoretical errors from the two body assumption in com-

puting perigee and the parabolic assumption in computing the corrective

maneuver are much less than the hardware errors.

5. The incremental error contributed from computing the corrective

maneuver is less than the error in computing perigee without a maneuver.

The total error with a maneuver is generally only slightly greater than the

error without a maneuver.

1.4 Organization of the Report

The balance of this report is organized as follows:

Section 2 gives the theory of operation of the manual space

navigation computer, its role as a backup computer during an abort condition

and the operational usage of the computer to achieve a safe reentry.

Section 3 presents the design approach developed under the study.

The expected accuracy capabilities of the various components used in this

configuration are indicated and form the basis for the specific design features

which have been adopted.

Section 4 describes in detail the method of analysis used to

perform a complete overall accuracy analysis of the manual computer. A

special computational program for the IBM 7094 using Fortran II was developed

for this purpose.

Section 5 presents the results of the accuracy analysis performed

on the IBM 7094 computer. There are 24 tables of data, each table being a

complete error breakdown for a particular case of using the manual computer.

1-3



Four abort trajectories provided by Ames, No A. S.A. were used and with

each trajectory various sets of observational data were chosen.

Section 6 is a discussion of the results of the accuracy

analysis. The results are evaluated to arrive at the overall capability

of the manual space navigation computer. In addition, the general

relationships between the location of the observation points and accuracy
have been established.

The actual Fortran II statement used to perform the accuracy

analysis is given in the Appendix at the end of the report.

1-4



2. THEORYOF OPERATIONAND FUNCTIONAL APPROACH

2. 1 Theoretical Basis of the Data Processing Computer

For operation of this manual space navigation computer, it is

assumed that suitable observation data from an Astro-Sextant or an equivalent

instrument is available. The bas.!c purposes of the space navigation data

processing computer are the fo!lowing:

To enable the operator to predict future points on the

vehicle trajectory on the basis of observed sextant

observations.

To enable the operator to predict whether a safe reentry

will be accomplished if the vehicle continues on its present

trajectory.

•.. To enable the operator to determine the required corrective

maneuver, if necessary, to insure safe reentry.

The theoretical approach utilizes a single mathematical equation

as the basis for satisfying all the above requirements. Thus, the data proc-

essing computer only requires the capabihty of solving this single equation.

The rigorous matbematical theory of space vehicle trajectories

must take into account earth oblateness as well as the gravitational effect

on the vehicle of the moon and sun. However, for earth-moon trajectories

these effects are small compared with the basic inverse-square gravitational

field of the earth. Therefore, the theoretical approach makes the two following
simplifying assumptions :

•.. It is assumed that only the earth exerts a gravitational

pull on the vehicle (i.e. the gravJ.tationaleffects of the

moon and sun are ignored. )

•.. It is assumed that the earth J.s spherical (i. e. earth

oblateness effects are ignoIed).

Once these assumptions have been made, all of the theory associated

wlth Kepler trajectories can be applied, these trajectories can be represented

by the following equation: (See Figure 2-I)
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Datum Line

Perigee Point

Earth

ehicle

Trajectory

FIGURE 2-I TYPICAL SPACE VEHICLE TRAJECTORY
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r--h 2_ ( 1 )_-

1 + _ cos (O-ep) 1 + e.cos (O-ep)
(II-1)

where:

Op = the angle from an arbitrary datum line to the perigee point

e = the ang]e from the arbitrary datum line to the space vehicle

r = the distance from the space vehicle to the center of the earth

_= h 2 = the semi-latus rectum

h = the specific angular momentum of the vehicle

/_. = the gravitational constant of the earth

= the eccentricity of the orbit

where if:

e _1, trajectory is hyperbolic,

= 1, trajectory is parabolic,

_ 1, trajectory is elliptical.

The quantities_, h,/_c and e are all constants on a Kepler trajectory.

Equation II-1 can be rewritten

1 + F.cos (O-Op)

1
I

r

=1 (II-2)

Then, in general, for any one conic

1 + e.cos (O3-Op)
1

r3

1 + e.cos (o2-ep) = 1 + ecos (el-ep)
1 1

r 2 rl

(II-3)

where rl, O1,
trajectory.

r2, 02, r3, 0 3 are the coordinates of three points on the

C'f-  -5o
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From proportion theory:

a c e a-e c-e
b d f b-f d-f

Therefore

1 + @--cos (83-8p) - 1- _..¢os (81-8p) = 1 + £cos (e2-ep) - 1 -6cos (e 1- £p)

1 - 1 1 _ 1

r 3 r I r2 r I

or

cos (83 - ep) - cos (81 - ep) = cos (e2 - ep) - cos (el - ep)
I 1 i - I

r 3 r I r2 rl

whe re:

el, 2, 3 = Observed geocentric angles between the vehicle and a reference

star in the plane of the vehicle's trajectory.

rl, 2, 3 = Stadiametrically derived distances between the vehicle and

the earth's center, corresponding to the angles el, 2, 3.

Bp = Geocentric angle between the reference star and perigee
point of the present trajectory.

(II-4 )

(II-4)

2.2 Functional DescrJ..ption of the Computer

A block diagram of the computer which solves equation (II-4) is

shown on Figure 2.-2. Seven quantities are involved in the equation, and the

computer contains a control knob and counter for each. If any six of these

are set into the computer (by means of bandcranks and counters) the seventh

can be found by rotating the corresponding crank until the bridge is balanced,

as indicated by a zero reading on. the "NULL INDICATOR". The associated

counter is then read to find the value of the unknown quantity which satisfies

equation (II-4).

Internally, motion of any handcrank drives the associated counter

through appropriate gearing and provides one input to a mechanical differential.

(Light frictional drags are placed on all input shafts to keep the motion of any
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one from rotating amy of the others through the differentials. )As shown in

Figure 2r2,the outputs of the differentials are:

(8 3 - ep), (8 2 - 8p), (8 i- 8p), (1___ _ ) and ( 1__ - n). The output
r3 rl x2 rl

shafts of the angle differentials are then used to drive mecbanlcal cosine

generators whose output shafts are, Jn turn, used as inputs to mechanlcal

differentials. There are, finally, four shaft positions, representing the

quantities :

(1) cos (83 - ep) - cos (e 1 - @p)

(2) COS (e2 -.ep) - cos (el - ep)

(3)( 1 1 )

r 3 r I

(4)( i i )

r2 .rl

These are the numerators and denominators of the left and right

sides of equation (!I-4), and are the ipPuts tO the electrical portion of the

computer. Specifically, these shaft angles position the wipers of four

potentiometers arranged in a modified, bridge circuit. The output of this

circuit is proportional to the difference between the two sides of equation

(II-4). When this quantity is zero (as indicated by the galvanometer), the

equation is satisfied; i.e.. the "unknown" quantity has been adjusted to

correspond to the trajectory parameters which were set into the other six

input s.

In addition, the computer incorporates a manually operated

roller chart which is simply a form of table giving the relationship between

the observed angle subtended by T_he earth's disk and the corresponding

range and reciprocal range, r_..e mechar_ism consists of a long tape with

corresponding values of. variables printed on it si,3e by side (somewhat in

the manner of the scales on the body of a s]J.de rule), a pair of drums to

receive the tape, and a knur]ed whee'] to drive it. ]n use, the operator

simply rotates the knob unt..tl the correct value of the known variable (say,

subtense angle) is u_der the hairline. The corresponding values of the

range and its reciprocal also appear under t.he hairline and are read out

directly.

2.3 Operational Usage of the Computer

The manual space pavigation computer performs four functions
as follows:

2-6



•.. Assistance Jr:the determiDation of present vehicle position

•.. Prediction of future vehicle position

•.. Determination of whether reentry will be accomplished safely

if vehicle continues on present trajectory

•.. Determination of corrective maneuver, if necessary, to assure

that safe reentry will occur.

The present position of the vehicle will be specified in terms

of distance from earth (r) and vehicle angular position (e) measured in

the plane of the trajectory from a known datum line through the center of

the earth. Figure (2-3) J31ustrates the method by which the coordinates
r and 0 are determined. The known datum l_ne is taken as the line from

the center of the earth to a reference star In the plane of the trajectory.

The angles A and B are measured with the sextant. A is the angle from the

reference star to the edge of the earth's disk. B is the angle subtended

by the disk of the earth. Knowing tbe angle B, the operator easily determines

the distance r by use of the roller chart. The angle 0 is determined by

0 = 180 - (A ± B ) (II-5)
2

The choice of sign in Equation (lI-Sj is governed by whether A is measured

to the near or far edge of the earth.

One of the important applications of the proposed manually operated

computer is to predict future points along the vehicle's trajectory on the basis

of present position. The basis of the method (see Figure 2-4) is the use of

three present position fixes. The entire posltion prediction problem Is solved

through using the expression (Equation (II-4))which is mechanized in the

manual computer. Future posltlon prediction is accotnpllshed as follows:

The angles 01, 82, 8 3 corresponding to the three present position
fixes, are manually set into thecorresponding counters on the face of the

computer (Figure 2.-5). The three obseFved ranges rl, r2, r 3 are converted
to corresponding reciprocal ranges by use of the toiler chart. These reciprocal

ranges are set into the appropriate counters. Every quantity entering the basic
equation (II-4) has now been set tnto the computer, except for the perigee angle,

0p. Therefore, the angular pos.ition of the perigee point can be found by turning

the perigee angle crank until the null meter indicates zero. The angular post-

tion of the perigee point can be now read from the appropriate counter. To
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FIGURE 2-3 METHOD OF FIXING PRESENT VEHICLE POSITION
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predict where the vehicle will be when it reaches some distance, r, from

earth, (indicated as "typical predicted future point" on Figure 2-4), the

reciprocal range corresponding to r is set in on the "reciprocal range No. 3"

counter. This causes the bridge to become unbalanced. The bridge is

rebalanced by turning the "angle No. 3" handcrank until the null meter

once again reads zero. The angular position of the vehicle at the predicted

point is then read from the "angle No. 3" counter.

An extremely important application of the proposed system is to

determine whether the vehicle will reenter the earth's atmosphere safely if

it is allowed to continue on its present trajectory. Insuring safe reentry

is particularly important on deep space missions, since in this case too

steep a reentry angle will cause the vehicle to burn up in the atmosphere,

and too shallow a reentry angle will cause the vehicle to skip back into

outer space.

It is convenient, in performing reentry analysis, to employ the

concept "vacuum perigee", which is equivalent in significance to reentry

path angle. When the vehicle enters the atmosphere the aerodynamic forces

cause the vehicle to follow a trajectory which cannot any longer be described

in terms of Keplerian theory. Conceptually, however, one can consider what

would happen if there were no atmosphere. In that case the vehicle would

continue on a Kepler trajectory and would reach a certain perigee distance

from the center of the earth; i.e. a "vacuum perigee". Clearly, reentry

path angle is related to vacuum perigee, since a steeper reentry path angle

will result in a smaller vacuum perigee distance. Thus, a certain allowable

spread in reentry path angle is equivalent to an allowable spread in vacuum

perigee. The allowable spread in vacuum perigee is referred to as the safe

reentry corridor. On a space mission the limits of the safe reentry corridor

will be known in advance. The basic rrethod of using the computer to ascer-

tain whether reentry will be safe is to predict the vacuum perigee, and see

whether it lles within the limits of the safe reentry corridor.

This is accomplished as follows: Three position fixes are obtained.

The resulting angles and reciprocal ranges (as determined from the roller chart

on the computer) are inserted manually into the appropriate counters in the

computer. Next, the angular position of perigee is determined by turning the

perigee crank until the null meter reads zero. The "angle No. 3" crank is

turned until the "angle No. 3" counter shows the same reading as the "perigee

angle" counter. This will cause the bridge to become unbalanced. The

"reciprocal range No. 3" crank is now turned until the bridge is once again

balanced, as indicated by a zero reading of the null indicator. The value

read from "reciprocal range No. 3" counter is converted to range in kilometers

2-12



by using the roller chart. This value of range is the vacuum perigee distance.

Since the operator knows the allowable limits of the safe reentry corridor, he

immediately can tell whether or not a safe reentry will occur.

If the above procedure leads to the conclusion that the vehicle

witl not reenter safely, then it is necessary that the proposed system be capable

of determining a corrective maneuver which will modify the trajectory so that

safe reentry will occur. The basic problem is illustrated in Figure 2,7. The

vehicle is shown on a present trajectory which will result in an unsafe reentry

because the vacuum perigee falls below the safe reentry corridor (i. e., the

vehicle would bum up in the atmosphere). It is desired to find the direction

and magnitude of the incremental velocity, AV, which should be inserted

during a corrective maneuver.

In executing a maneuver to correct vacuum perigee there is always

an optimum direction in which thrust should be applied to minimize rocket

fuel expenditure. In general, this optimum maneuver causes both the magnitude

and the direction of the velocity vector to change. However, determination of

this truly optimum maneuver would complicate the computational requirements

to an extent which would be incompatible with equipment simplicity. Therefore,

a compromise has been adopted which insures accomplishment of the desired

corrective maneuver with a reasonable (although not truly minimized) expenditure

of fuel. This has been achieved by assuming that the corrective maneuver in-

cremental velocity, _v, will always be inserted perpendicular to the present

velocity v, and will thus produce a pure direction change, with no change in

magnitude. This is the situation pictured in Figure 2.7. Thus the required

corrective maneuver can be expressed completely as a required change, Zi,_,

in the flight path angle.

Furthermore, flom Keplerian orbit theory, if two orbits have equal

major axes (as shown in Figure 2y8) then thelr specific energies are equal.

Thus, for example, if a maneuver changes the perigee distance by +10 miles

leaving specific energy constant (i. e., not changing velocity magnitude) then

the apogee distance changes by -10 miles.

The above considerations are all quite clear for elliptic orbits,

since the apogee distance has a clear physical significance. One can, however,

always mathematically define an apogee distance, even for non-elliptic orbits,

being zero for a parabola and negative for hyperbolic trajectories. The signi-

ficance of this generalized definition of apogee distance is that the relation-

ship discussed i n connection with Figure 2-8, (namely that the sum of the

rperigee and rapogee remain the same after a maneuver) can be shown to be
valid for al_./1Keplerian orbits.



Safe Reentry
Corridor

Present Unsafe Trajectory

/acuum perigee toq low)

Earth

Desired Safe Trajectory

Vacuum perigee in

safe 'reentry corridor)
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_Vehicl

_(Change in path angle)

AV (Corrective
Maneuver)

e Location

FIGURE2-7 INSERTION OF CORRECTIVE MANEUVER
TO INSURE SAFE REENTRY
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Before proceeding to the actual operation of the computer in

determining corrective maneuvers, it is necessary to discuss one other

assumption which is made. It Is assumed, in computing corrective

maneuvers, that on deep space missions, the vehicle will reenter at a

velocity very close to escape velocity which is equivalent to assuming

that the vehicle is on a parabolic orbit. It should be stressed that this

parabolic assumption is used only for determining corrective maneuvers,

and not in computing the vehicle's trajectory. Figure 2.-9 illustrates why

the parabolic assumption leads to system concept simplification. From

geometry and the properties of a parabola it can be seen that the path

angle, _, is given by

,_ = (e - ep) - 180 (iI-6)

Therefore at vehicle angular position, 8, if a maneuver results in a new

trajectory whose perigee angular position differs by ziep from the original

perigee angular position, then the maneuver will have a path angle change

Z_XJgiven by

Z_ = ASp (II-7)

2

This is an extremely important result, since it says that the

required path angle change is determined by simply knowing the angular

shift in the perigee which results from changing trajectories via a corrective

maneuver of the type being considered.

Having established the above theoretical background we can now

proceed to the operational steps required when using the proposed computer

to determine a corrective maneuver which will assure safe reentry.

1. The vehicle's present trajectory in the form of three sets of

positional fix data is cranked into the appropriate counters and the bridge

is balanced by turning the "perigee angle" crank until the null meter reads

zero.

2. Next, the perigee distance of the present trajectory is

determined. This is accomplished using the "No. 3" input cranks. The "angle No

counter is set so that it reads the same as the "perigee angle" counter. Then the

"reciprocal range No. 3" crank is turned until the bridge is balanced. The

reading of the "reciprocal range No. 3" crank is converted to range in kilometers

through the use of the roller chart. This gives the vacuum perigee of the present
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trajectory. If it does not fall within the safe reentry corridor, the operator

notes this value of vacuum perigee (since it will be needed later in the

procedure).

3. The next step is to set in information concerning the point

at which the maneuver is to be made. The "No. 2" inputs are used for this

purpose. The operator decides on the range distance from earth at which

the corrective maneuver is to be made. Through the use of the roller chart

this range is converted to reciprocal range and inserted into the "reciprocal

range No. 2" counter. This unbalances the bridge. The bridge ls rebalanced

by turning the "angle No. 2" crank until the bridge is balanced, as indicated

by a zero reading on the null indicating meter. The angle reading on the

"angle No. 2" counter is then the predicted angular position of the vehicle

when it reaches the point at which the maneuver is to be made.

4. The next step is to determine the apogee of the present trajectory.

This is done using the No. I input cranks. The "angle No. I" counter is set

so that its reading differs by 180 degrees from the "perigee angle" counter.

This unbalances the bridge. The bridge is rebalanced by turning the "reciprocal

range No. I- counter. The reading of the "reciprocal range No. I" counter,

converted to range distance In Kms. via the roller chart, is the apogee distance

of the present trajectory. It can be either positive or negative depending on

whether theorblt is elliptical or hyperbolic as was discussed earlier.

5. The next step is to set in t_e perigee of the new, desired

trajectory. This is accomplished by setting "reciprocal range No. 3" counter

to the reciprocal range which corresponds to the new, desired vacuum perigee

(usually selected to be in the center of the safe reentry corridor). This opera-

tion unbalances the bridge, which now remains unbalanced until the final step

in the procedure.

6. The next step is to set in the apogee of the new, desired trajectory.

The new apogee distance is determined by algebraically adding to the old apogee

distance an amount equal and opposite to the difference between new and old

perigee distances. (This is in accordance with our earlier discussion concerning

the constancy of apogee plus perigee distance in the face of a maneuver which

leaves velocity magnitude unchanged). The reciprocal range corresponding to

the new apogee distance is set into the "reciprocal range No. 1" counter.

7. The next step computes the required change In path angle. This

operation makes use of the result discussed in connection with equation (II-7).

The new trajectory will have a new perigee angular position, and the change in

perigee angular position is twice the required change In path angle. (This is

the reason for the 2ool gear ratio interposed between the ep shaft and the Zl_
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counter shown in Figure 2-2). The "angle No. 1" and "angle No. 3" shaft

locks are set to the "compute transfer maneuver" position. This locks the

outputs of the corresponding different.!als shown in Figure 2-2. The "required

change in path angle" crank is turned until the bridge is balanced, and the

required change in path angle is read from the "required change in path angle"

counter. The magnitude of the required incremental velocity is determined by

Av = (ii-8)

where the symbols are defined with the aid of Figure 2. 7. The value of V

to be used in equation (II-8) is known on the basis of the previously dis-

cussed parabolic assumption, since V is the parabolic velocity corresponding

to the range distance at which the maneuver is made, and therefore can be

tabulated in advance. In fact, this information could be included on the roller

chart, as shown in Figure 2-6.

8. In addition to knowing the magnitude, v, of the required incremental

velocity, it is also necessary to know its direction, since the vehicle thrust

vector must be oriented in this direction to properly execute the maneuver. Since

the maneuver is to produce a path angle change only, with no change in velocity

magnitude, it is clear that the thrust must be directed perpendicular to the

velocity vector. Therefore, as is evident from Figure 2.--9, the angle, _' ,

which the vehicle thrust vector makes with the local vertical is given by

= 9 0 - _ (II-9)

which, combined with equation (II-6) yields

_=8p-O

2 (II-lO)

The value of 8 (the angular position of the vehicle with respect to the reference

star at the predicted maneuver point) is read from the "angle No. 2" counter,

and the value of 8p is read from the "perigee angle" counter. (It would be
possible to read _" directly from a counter geared 2:1 with the output of the

8 2 differential in Figure 2-2 although this feature is not shown).
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3. DESIGN STUDY AND COMPONENT CAPABILITY

3.1 Summary of Technical Philosophy and Guidelines

The technical philosouhy and guidelines governing the design of

the manual computer, in summary, are given below.

The proposed manual system will be used for monitoring failures

of the more complex primary system, and for performing navigation and

guidance on an independent basis.

Hardware ground rules place primary emphasis on manual operation.

These rules call for minimization of electric power consumption, use of self-

contained unregulated DC where mandatory, and the exclusion of electronic

equipment, servos, motor drives, and automatic readout techniques to insure

maximum simplicity and reliability.

It is important to recognize that formulation of a system concept

which is consistent with the above mentioned simple "hardware ground rules"

compels one to pay the price of compromising system flexibility, accuracy,

etc. compared with what is achievable with a more complex, less reliable

primary navigation and guidance system.

In spite of the above mentioned simple "hardware ground rules"

and operational limitations, it is nevertheless mandatory that certain

operational requirements be met by the proposed manual system. These

include fixing present position, predicting future position, predicting whether

safe reentry will be accomplished, determining corrective maneuvers (when

necessary) to assure safe reentry.

3. Z Computer Design Considerations

The guiding principles in the design of the data processing system

are maximum reliability and minimum power requirements, size and weight

consistent with the accuracy required. The design proposed uses a combina-

tion of highly accurate manually driven mechanical and electrical computing

elements, and a low-voltage, unregulated D.C. source, such as a small dry

cell, with linear potentiometers. The circuit is so arranged that the total

resistances of these elements need only be nominally correct. No transistors,

vacuum tubes, servo motors or other active elements are used anywhere in the

c omput e r.
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3.3 Description of Computing Elements

The initial design of the proposed system using manually driven

mechanical and electrical computing elements, energized by a small self-

contained battery source, is shown in Figure 3-I. The packaged unit is

illustrated in Figure 2-5.

The @ input angles are introduced at 7Z speed (5 deg/rev. ), 0 to

360 degrees of continuous rotation by means of 3 inch crank wheels which

permit the operator to spin set the inputs close to the observed values. A

thumb wheel and dial is provided to improve input accuracy. Readoat is

accomplished by means of the counters and thumbwheel dials. Verniers

may be installed if extreme accuracy is required. The _ counter covers

the range -20 to +20 degrees and is equipped with a flagged shutter to indicate

sign. It also has a thumbwheel and (±) dials to improve accuracy.

The 1/r counters are zero centered and have a similar flagged

shutter to indicate sign. These cover a range of +. 99999 to -. 99999,

although only a small part of the negative range is actually utilized, as

explained below. The numbers indic_Lted are not actually the reciprocal

of range but, rather, rmin/r , the radius of the minimum instrumented

range divided by the range observed or computed. This presentation seems

preferable since the quantity 1/r itself would contain a minimum of three

zeros between the decimal point and the first significant digit. It is felt

that this could be a source of confusion to the operator. The value of rmin

chosen for instrumentation is determined by the earthts radius minus a

sufficient allowance to: (I) accommodate computation of initial trajectories

which would perigee in the earth, and (Z) a sufficient allowance for the phase

angle adjustment (to be explained later). In any case rmi n is selected to

cover any possible operational case, plus a margin of safety.

Since the only time a negative range will be encountered is upon

computation of radius of apogee for hyperbolic orbits, only a small portion

of the l]r negative range need be i_strumented. This lower limit will be

determined essentially by the magnitude of eccentricities considered possible

for slightly hyperbolic orbits. Limits on the i/r inputs will be established

accordingly by means of mechanical stops.

The O and 1/r differentials will be commercial miniature precision

types run at high speed to minimize error. Precision 3 or anti-backlash gear-

ing will be utilized at the low speed inputs to the cosine generators, potentiomete _

and range rheostats since sensitivity to error is obviously greater at these point_
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It was recognized e_rly in the study that the cosine mechanisms

and the low speed cesire differentials wc_uid pro_¢e to be the critical sources

of error. A search for components showed that no available commercial

units could provide the accuracy required. As shown in Figure 3-I, the

design will be based on the special fabrication of highly accurate scotch

yoke angle solvers and linear rack differentials. By increasing the carriage

travel to ±3 inches, a factor of four over miniature commercially available

units, and by relaxing tolerances only slightly it is believed that the required

accuracy can be a'::tained. Rugged construct:__on will be utilized to minimize

compliance errors. The improvement to be attained, in effect, puts the

cosine generators and rack differentials about on a par, error-wise, with

the range rheostats and cosine poter.tiometers.

In order to obtain the maxim_am in accuracy from the delta reciprocal

range rheostats and the delta cosine potentiometers, a simple operational rule

in the designation of the first and third observations will be utilized. This rule

is interpreted by the operator to mean that data relating to the observation

furthest from earth should be inserted always in the O1, 1/r 1 channels, while

data corresponding to the minimum range is introduced in the Q3, l/r3 channels

regardless of which obser_:_.on comes first. This is particularly important

on elliptical flight paths where observations might normally cover as many as

3, and theoretically even 4 quadrants. This restricts the cosine differences

to a functional range of 2. (froth_ 0 to 2.) instead of 4, and the 1/r differences

to a value of 1/rmi n + 1/ra c_yoe' rbo.lc_" instead of Z/rmin. As noted previously,

the 1/r a hyperbolic term is q ui_e small, making the instrumented range just
slightly larger than the se!ected value of 1/rmi n. Use of this simple opera-

tional rule enables dc.,uble accuracy to be obtained from the rheostats and

potentiorneter s.

The zero resistar.__.-e point on the rheostats will nominally correspond

to the maximum -_du.e of the rec_!procal range, noted above as 1/rmi n + 1/r a

hyperbolic. O_. the delta, cos:_.ee potentiometers the minimum resistance point
will correspond to the ma_mumvalue of the cosine differences, +2. Figure 3-Z

shows the sca!iz_.g to be used for ._.be r.":e_:,staZs a o_d potentiometers. Adjustment

of the phase angle _)o c'_the rb.eos_,'.",_i!lbe discussed later.

Since it is imI_,r_<:_i,,'¢G t_ attempt to use stops at the low speed end

of the cosine tre_ins, and sin_ze the @ [nputs must be left unrestricted through

360 degrees ".n any case, some o_:b_er means of instrumenting the reduced

range of the cosine p_,tentiemezers must be employed. This will be accom--

plished by energ'zir.g only or._e-ha!f of a 2,0 turT._ ce.__ter tapped potentiometer
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or utilizing dummy windings on 10 of the turns. It will be necessary to

specify and procure units which can meet the same linearity requirements

over one-half of their range (i. e. , 10 turns) as would be needed on a 10

turn potentiometer. This should impose no great difficulty since the

manufacturer needs to maintain the tight linearity only on one half of the

center-tapped potentiometer. This scheme enables the O inputs to cover

any selected angle, 0 to 360 degrees while use of the operational rule

insures that for bridge balancing, the high linearity, energized portion

of the potentiometers will be utilized.

The 1/r potentiometers must also be protected to

prevent damage during bridge balancing when the quantities 1/r 3 - 1/r 1

or 1/r Z - 1/r 1 momentarily become negative, or in case the operator

forgets to use the operational rule r 1> r2>r 3. This can be accomplished

by using 20 turn center-tapped rheostats with 1/2 of the windings dummied.

In the bridge circuit, shown in Figure 3-3, voltages proportional

to each side of equation II-4 are generated by multiplying the reciprocals of

the denominators by their respective numerators. The reciprocals of the

denominators are taken by means of linear rheostats driven by shafts

representing the quantities whose reciprocals are desired. The numerators

are taken by linear potentiometers as shown. At null the bridge balance
condition is:

/ / - "_"B_ Ill-I

corresponding to:

_I- - /._d._
r,. _/,

_.!_-/ __Z._

IH-2
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In trimming the bridge it is necessary to set the shaft phase angles

of the rheostats so that the denominators of Equation 111-I are linear representa-

tions of the denominators of Equation lll-Z. This may be accomplished by

adjusting the values of the trim resistors such that

If, for example, the phase angle of the right rheostat is set to _o,

its output will be

Eo= Ill-3

because the terms KI_) o and FTG? in Equation IIl-I cancel. This provides

Z'T.
a rheostat output proportional to the reciprocal o£ the input, as desired.

However, it is also necessary to insure that the net gradients of the two

sides of the bridge are absolutely equivalent. This can be accomplished

without requiring tight absolute linearities on the potentiometers and rheo-

stats, by the following procedure.

First calculate the proper value of _o to linearize the denominator

of Equation III-1 using an appropriate value of R T.

At balance, the following bridge condition will exist if bolh 0o and _b i

been properly set to provide linear outputs over their range.

IH-4

have

Ill- 5
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Next, calling the lumped constants of Equation HI-S, C and C' gives

e' _' =C _-_

IH-6

The proper value of R T' is then computed by equating

IH-7

and solving for R T'

_' = _, '_' C
_'- _/,'c

111-8

From this, the proper value of @o' is computed as

(e,-"__ 7 k,'
IH-9

The trim resistors R T and RT° are installed first. Then the phase angles _o
and _)o' are set. This is accomplished by setting the 1/r 3 and 1/r Z counters

to their maximum readings (.99999) and the I/r I counter to the proper value

corresponding to 1/rahyperbolic, based on the roller chart scaling which was
tentatively selected as rmin/r.
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Next the shafting to the rheostats is disconnected and the wipers

are rotated back from their zero ohm positions through angles corresponding

to _)o and _bo I. The shafting to the rheostats is reconnected and the procedure

is complete. _)o and _o I represent the minimum shaft positions for which

valid bridge balancing can be obtained. The zero point on the rheostat will

now correspond to r a hyperbolic plus a minimum radius slightly larger than
the originally selected rmi n (by the factor _)o shown in Figure 3-Z). This

may be satisfactory or it may simply mean that a new initial value or rmi n

be chosen and the procedure starting with the rheostat phase adjustment be

repeated until a satisfactory rmin is achieved. The final value of rmin is

then used to calibrate the roller chart discussed in Section 3.5. The total

of the four adjustments R T, _o, RT' and_)o i insures that when _Z/_lis

set equal to _)ZI/_)l ' by means of the input counters and dials, the bridge

will balance. The cosine potentiometers are set up in a straightforward

fashion such that minimum resistance corresponds to a cosine difference

of +Z and the maximum resistance instrumented to 0.

The same low-voltage battery supplies both sides of the circuit,

and while an extreme decrease in battery voltage will reduce the galvanometer

sensitivity, it will not bias the null indication in either direction.

The output voltages are compared by a zero center galvanometer.

It will be desirable to provide a four scale sensitivity setting, from "High" to

"Low", rather than the two scale version shown in Figure Z-5. This topic is

further developed in Section 3.4.

3.4 Component Capability

Component accuracy capabilities for the manual computer have

been assessed and are tabulated in Figure 3-4. All major errors by

component, source, maximum value or spread relative to 1 speed have

been included. Each error is related to a 8pecificC No. in the error equations

of Section 4. In addition, each is assigned a reference letter showing its

location on computer schematic, Figure 3-5. The 1 _errors have been

computed on the basis of the maximum values assuming independent rectangula_

distributions for each error. In the following discussion it may be helpful to

refer also to Figure 3-1.

For the gear trains and differentials, backlash is considered the

major and only significant source of error. Precision 3 meshes or anti-

backlash gearing has been used for the trains. Backlash in the _ and 1/r

precision differentials has been taken as 10 minutes of arc between end gears
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and related to the IX shafting. In general, for the critical gear train meshes,

a total backlash of . 001 inches has been specified in arriving at the maximum

errors listed. The total backlash is attributable to center distance changes

resulting from total composite error, pitch diameter tolerances, shaft and

bearing eccentricities, etc.

Errors in the cosine mechanisms are caused primarily by bearing,

pin, slot eccentricities, play and compliance under load. The error assigned

of II/6000 is based on maintaining a tolerance of i. 001 inch over the full

carriage travel of 6 inches (_3 inches). These errors are bias type errors

relative to Z corresponding to the full range of the cosine mechanisms.

Errors in the precision rack differentials of _I/4000 are based

on a backlash specification of ±. 00075 inches over the 0 to +3 inch carriage

travel of these devices. Again these are bias type error corresponding to

the full functional range of 0 to +2 in the differential cosine functions which

results from observing the operational rule r I _" r2 >'r3-

The linearity of the rheostats and potentiometers is specified as

i. 0Z_ of full range. The rheostats and potentiometers are assumed to have

total ohmic values in excess of I000 ohms, which makes a ±. 02_ linearity

feasible since, in general, tighter linearities can be obtained in the higher

resistance units. Resolution is assumed to be essentiaUy infinite. Errors

Nos. 20-28 are bias taken relative to I/rp (or 1/6430 KM) for this study,

based on the maximum functional vaiues and range of the 1/r i and

1/rj - I/r k functions. Again limiting the range of I/rj - I/r k to I/rp

is a result of employing the operational rule described above.

The error of ±5 arc seconds assigned to the Q input dials and

gearing assumed that a vernier was used on the O input dial. However,

since the results of the study show that this source of error is one of the

least critical, a relaxation in accuracy of dial readout to 15 arc seconds

or so can certainly be tolerated without significant effect on the overaU

accuracy.

The _I/40,000 error listed for the I/r input counters and gearing

is compatible with the use of a four digit (. 0000 to . ?999) counter having a

high speed dial with four graduations between each significant fourth decimal

figure. Here again, results of the study indicated that this is a permissible

accuracy degradation from the five digit, or 1/100,000 counter described in

Section 3.3.
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The tolerance on the trim resistor RT', discussed under Section 3. Z

above, is related as follows to the specified value for the scaling error listed

as error No. 29 in Figure 3-4.

IH-10

IH-11

Allowable Tolerance ._.._/'_T t

/

-- /_T IH-12

For the galvanometer a microammeter with a sensitivity

and readout accuracy of ±1% will be sufficient for any desired hulling

accuracy. Errors in the bridge, resulting from galvanometer error, can

be made as small as necessary by proper selection of shunt resistances

and other circuit parameters. From the results of the study, it appears

feasible to incorporate the following four sensitivity settings for the gal-

vanometer in terms of the minimum discernable error in _"p, step 2, versus

the full scale values:

_'p Corresponding to

Minimum Discernable _'p Corresponding to

Sensitivity Setting Galvanometer Signal Full Scale

High 1 ±0. 1 KM ±IOKM

2 ±IOKM ±I000KM

3 ±I000 KM ±I00,000 KM

Low 4 ±100,000 KM ±I0,000,000 KM

The corresponding minimum discernable signal in @p on the High scale for step 1

would be less than I0 arc seconds. The other settings on step 1 would scale out

proportionately.
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4. METHOD OF ACCURACY ANALYSIS

4.1 Approach to Accuracy Analysis

The approach used in the accuracy analysis of the manual com-

puter is shown in Figure 4-1. The final result, total errors in perigee radius

and angle, with maneuver, represents the RSS combination of errors in two

categories: (I) total errors assuming no maneuver; (i. e., only computing

the vacuum perigee) and (Z) the incremental errors due to the corrective

maneuver computation. (i. e., computing the required change in velocity

direction to alter the vacuum perigee) In turn, each of these subtotals

consists of an RSS combination of hardware errors and errors in concept.

Concept errors for the "no maneuver" category are incurred because of the

simplifying assumptions of two body theory and a spherical earth in the

manual computer formulation. The concept errors for the corrective

maneuver computation are the result of assuming a parabolic trajectory

for these calculations. Hardware errors in each category are composed

of inaccuracies in the mechanical and electrical components of the manual

computer and in the input observational data. Inaccuracies in the observa-

tional data is due primarily to inaccuracies in the measuring equipment and

is therefore included in the hardware classification. The RSS summary

results of the error analyses performed in this study are presented in Section 5.

4. Z Notation and Geometry

The notation and geometry used in the accuracy analyses of the

manual computer is presented in Figures 4-Z and 4-3. These figures should

be consulted when necessary in the further discussions of this section.

4.3 Trajectory Input Data and Computations

Trajectory input data for this program was obtained from a NASA

Ames simulation which provided a series of 14 abort trajectories returning

to earth from abort way stations separated in time by about four hours on a

translunar trajectory. Each of these abort trajectories took into account the

gravitational attraction of the sun, moon and earth, including earth oblateness

effects. In addition, each trajectory had been precalculated by Ames to attain

a perigee of 6430 kilometers including these effects. From this set of data,

twenty-four problems for the manual computer accuracy analysis were formu-

lated. These problems are in two groups, each group containing twelve pro-

blems. Four representative abort trajectories were used. These were trajec-

tories numbers 1 ,Z, 5 and 14. In each group three problems were prepared for

each of the four trajectories.
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The first group contains problems with a fixed corrective maneuver

point which occurs approximately 1/2 hour before perigee. The third obser-

vation point is also fired and occurs about 1 hour before perigee. In this

group the first observation point is varied. For problem No. 1 _ the first

observation is taken as the first or second point listed following the abort

maneuver. There is one exception in the case of the 14th trajectory where

the first measurement was arbitrarily limited to be within Z00p 00O KM of

the earth. For problems 2 and 3, the first observation occurs successively

closer to perigee. The second point is taken so that it divides the angle

between the first and third observations about in half.

The second group contains problems with a fixed first observation

point and a variable corrective maneuver point. The first observation is

always taken at the first or second listed point following the abort maneuver,

except in the case of the 14th trajectory as explained above. The first pro-

blem for each trajectory in Group Z corresponds to the first problem in

Group I. Problems Z and 3 of the second group represent situations where

the corrective maneuver and third observation occur earlier. Again the

second point is chosen to bisect approximately, the angle between the first

and third observations.

A problem number is assigned to each of the twenty-four problems

or cases. The first digit indicates the NASA abort trajectory number, I to 14.

The second digit is the group number, | or Z and the third digit is the problem

number, I to 3. For example, problem numberl._. 3means the third problem

of the first trajectory in group Z.

Figure 4-4 presents the input data for the Z4 problems. There are

four points listed in X, Y, Z, r coordinates for each problem. The first three

points represent the three selected observational positions while the radius

to the fourth point represents the chosen radius for the corrective maneuver.

The desired perigee is taken from the NASA data for each trajectory. Figure

4-4 also gives the O and_ angles, which are defined in Figure 4-Z. The

angles are computed from the cartesian coordinates of the NASA data by

means of the foUowing conversion

cos (_ - _p) - Xi Xp+ YiYp+ Z i Zp IV-I

r i rp
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where the subscript i corresponds to a given point, I-4, of the NASA data

and the subscript p corresponds to the desired perigee taken from the same

data. In this program a ficticious reference star is assumed to be located

on the radius vector from the earth's center through the perigee point

actually attained on each orbit. This makes_p in equation. IV-I zero and
computation of the _ts. The computation for_ is indicatedfacilitates

in Figure 4-2.

Also indicated in Figure 4-4 are the approximate angular differences

between the-6-angles, the initial eccentrity of the orbit,the approximate radius

of apogee if an apogee occurs on that trajectory, and the time differences

between perigee and the third observation and between perigee and the corrective
maneuver.

Figure 4-5 is a sample sheet for a typical problem showing the

program inputs and results of input computations.

4.4 Analysis of Hardware Errors

The simulati_m sequence matrix and step equations utilized to

determine the effect of hardware errors in this program are indicated in

Figures 4-6 and 4-7.

It will be recalled that the relationship of the _: numbers of the

step equations to specific J(_ hardware errors is spelled out in Figure 3-5.

A similar relationship between errors in the observations and the _ numbers

is provided in Figure 4-8. The _ _error in sextant measurerr_ts has been

taken as* 10 arc seconds. Figure 4-8 indicates the steps on which the

observational errors are introduced or removed from the error equations.

This is different from the program used for component errors which are left

in for all steps. Also noted in Figure 4-8 is the computation utilized in the

program to translate a sextant error, _ , into the equivalent range error,

Only one err_r at a time is evaluated by means of the step equations.

For steps I-6, the computed va_ue of the unknown, containing any accumulated

errors is carried forward as an insert in the next step.

Although not all the _ numbers given in the step equations had a

counterpart in terms of an error ir the manual c_mputer, all were programmed
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Observation

Error

Designation Value

Reference

(Note i)

81 E81 TI0 sec E5

8 2 ¢8 2 " ¢13

83 C83 " _3

rl _rl ¢6 " -+i0 sec e 9

r2 ¢r2 " ¢18

r3 Er 3 " E8

re Er "c ¢18

Affects

Bridge Equations

Steps

,(Note 2)

I, 2, 3 only

I, 2 only

I only

I, 2, 3 only

1, 2 only

I only

3, 4, 5 only

NOTES: . E_is the sextant error in measuring 6, the angle subtended

by the earth from the point concerned. Er - -ED • r

ctn 6/2. 2

2. Bridge equations and steps are presented in Figure 4-7.

FIGURE 4=8 - Manual Space Computer Schedule of Observational Errors
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using nominal error source values for backup purposes or possible future

reference. This was the case for many of the scale type errors having

the form ( I _).

In the program, Op and rp are obtained from steps 1 and Z and

the errors _Qp and _rp are calculated as the difference between the

nominal values of ep and rp and those obtained with error. Qpt and rp'

are obtained from steps 5 and 0 of the sequence and the errors _Qp' and

_rp I are taken relative to the nominal (perfect) solutions for 4_p I and rp '.

It is noted that step 6 is used for purposes of error analysis only and has

no counterpart in the actual manual computer operation. From step 6 the

error in perigee radius corresponding to a change in perigee with error

versus a change without error is obtained. The signs of the errors as

printed out are governed by rules which provide an insight into the

relationship of the erroneous solutions relative to the nominal ones.

For example, a negative value for _rp indicates that the erroneous solution

for rp resulted in a perigee below (in altitude) that of the nominal solution.

Also, for example, a positive value for _Op indicates that the erroneous

solution for (_p resulted in a perigee ccw from the nominal one (see notation

for Qp, Figure 4-2). This sign convention also applies to the printout of

the two body vs. four and earth oblateness errors, Erp" and _Gp, °l

relative to the NASA data (i. e. the desired perigee) and to the errors due

to the parabolic assumption of corrective maneuver, _rp I _' and _Op I'1,

taken relative to rp _ and Op t.

Figures4-9 and 4-10 are sample sheets showing the program

outputs for the nominal solution, indicated by EP(O, O), and for typical

error source inputs. The first number in the parenthesis following the EP

stands for a J number which corresponds to a given _ number. A table,

not shown, is needed to relate all the J numbers to the equivalent_numbers

in the step equations. However, in the cases shown, J1, Z, 6 and 7 do

correspond to_l, Z, 6 and 7. The second number in the parenthesis stands

for a K number which is a specific numerical value of the error source in-

put. Each numerical input was evaluated first for its (+) value and then for

its (-) value to test for linearity. This test was supplemented, generally,

by introducing relatively large (+) and (-) error values for the K9 and 10

inputs. For example, K9 and 10 of_l correspond to a ±1.15% variation in

the bridge trim parameter (I+E1). The results indicate good linearity even

for this rather large error. The same thing is evident for K9 and 10 of _ 0

which corresponds to a bias of ±0.0058 in the (O 3 - O p) cosine mechanism.

Satisfactory linearity in the results was obtained for all source errors and

problems programmed.
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4.5 Two Body vs. Four Body and Earth Oblateness Effects

Since the NASA abort trajectories contain the four body and

earth oblateness effects, Erp" and _Op" are obtained simply by taking

the difference between perigee (rp" and Op") for those results, and the

nominal perigee (rp and Op)solution, steps 1 and Z, by the manual

computer. Referring to Figure 4-9, it can be seen that these errors

are printed out as the first two errors on the second line. The error

Oc", representing the difference between @c" of the NASA data and

{_c of the manual computer is also printed out although it has no direct

use in the program.

4.6 Errors Due to Parabolic Assumption of Corrective Maneuver

As described in Section 2, the computation of the velocity in-

crement and vehicle orientation for its application is based on the simplify-

ing assumptions of a parabolic trajectory for the corrective maneuver.

The manual computer corrective maneuver computation uses the incremental

change in perigee angle, A_p, which is generated after inserting a desired

change in perigee radius, _rp, in the general conic equation. The velocity

increment Z_/ = _/PAB X _ _) is then applied perpendicular to an assumed

parabolic flight path at the selected corrective point. From this it is

assumed that the directic, n but not the magnitude of velocity vector is

changed, preserving the same level of orbital energy. The simplifying

assumptions made are

a. _ =AO, which is true only if the trajectory is a parabola.

Z

b. The vehicle has parabolic (escape) velocity at the correction point.

Co That it is satisfactory to apply the velocity increment normal to

an assumed parabolic trajectory.

The program determines the errors due to these assumptions for

each problem by first calculating the actual perigee (rp'" and Op'") that would

result under two body theory from the application of the computed velocity

increment to the existing nominally computed orbit at the correction point.

These results are then compared with the simulated nominal manual

computer solutions for revised perigee (_ID' and ep').
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EGp t'' = Op tl' - @p' = (@c - @p,} _ (@c - @p"'} IV-Z

The geometry involved in these error determinations is given in

Figure 4-11.

Inputs to this portion of the program are obtained from the nominal

computed problem solutions. Inputs are @p, rp, Oa, ra, Oc, rc, Op I and

rp'. The following input calculations are performed:

_rp ; rp' - rp = rpl D - rpN IV-4

a - Y_ + TP IV-S
2

e = ra - rp IV-6

ra + rp

/_Op = (_p' - Op IV-7

_Q = AOp radians IV-8

2

Next the velocity on the ellipse at the point c is determined by means

of the following equations. This velocity is resolved into its horizontal

and vertical components (refer to Figure 4-12).

cos ec - (+) I1 + ecos <Oc-Op)] IV-9
2 - rC/a

sin _)c _ cos2_) c _l/Z= - IV-10

Vc = (+) [_(_?'_ al) ]l/Z IV-I1

VRC - _/c sin _)c IV-12

VHC = Vc cos _)c IV-13

_c = (+_ tan -1 [sin _c ] IV-14

"kCOS¢_c J
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Nominal. Computed

Perigee Before

Maneuver (rp, 8p)

(gc " Up 111

ef.

Star

Desired Perigee
with Corrective Maneuver
as Computer by Manual

Computer (rpl,Opl)

Actual Perigee Attained
Due to Use of Parabolic
Assumptions of Corrective
Maneuver (rplll, eplll)

\

\

, Correction Pt.

Earth

(gc - gp)

i.ginal Computed
Trajectory

Apogee (ra, Oa)

Figure 4 - ll

Geometry for Error Determination
Due to Parabolic Assumption of Corrective Maneuver
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Vc E1 1 i pse

I .._f VRc = vc sin -c

_arcn- " "c _ C Correction Point

___Ceo/ PorUetedaTnreauJ:C t or Y

Apogee

Figure 4 - 12

Resolution of Present Velocity
into Radial and Horizontal Components

for Error Determination of Parabolic Assumption
of Corrective Maneuver
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Next the magnitude of AV is computed:

VpAB = F.2._.l I/Z

L Arc

_V = (+) {VpA B)

IV-15

(_) _-16

where to avoid ambiguity the sign of AV is always taken as positive.

The horizontal and radial components of AV are computed (refer to

Figure 4-13):

AvRc

_VHC

= _V cos (90° - _)c PAB) IV-17

= /_V sin (90° - _)c PAB) IV-18

Then the new velocity at point c in radial and horizontal components ie

VRC n' = VRC _" AVRc IV-19

VHC'" = VHC * _VHc IV-Z0

where the sign of the _V terms is taken relative to the signs ± of/_rp

(see IV-4).

VCI" is obtained.

_V ,,,)2 ,,,2"_1/2Vc'" = RC + (VHc IV-21

Now since all the trajectories encountered are elliptical, the following

set of equations are utilized to obtain (Oc _ @pit|) and rp TM.

h"' = (rc) (VHC'") IV-ZZ

a,, : (rc) (q,! IV-zs
(Vc) c

e =.. = 1 - (h'') Z 1/2 IV-Z4

(#_) (a,,,)

I'" = (a'") I - (e"') 2 IV-25
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](Oc-Op'") = cos "' - rc IV-26

e"'

rp, tt = a II_ (1 - e Ill) IV-Z7

The results of equations IV-Z6 and Z7 are utilized in equations IV-Z

and 5 to obtain the error sought.

A sample sheet showing program inputs and outputs for the parabolic

assumption analysis is given by Figure 4-14.

4.7 Galvanometer Range and Sensitivity Investigation

In order to obtain an insight into the percentage variation in the

bridge null difference versus percentage variations in the quantities ()p and

rp, the investigation indicated as step 7 of Figure 4-7 was programmed. Of

particular interest are steps 7b and 7c. In step 7b, variations in _ 30 {the

null quantity) are obtained versus variations in rp according to note 1. In

step 7c variations in E30 are obtained versus variations in _p according to

note 1. The information obtained enables one to determine the minimum

discernable error in rp and _p vs. any desired scale range in these quantities

fDr a given galvanometer sensitity (say 1%). Figure 4-15 is a sample sheet

showing the program outputs for step 7, at the bottom. The top two lines of

sixteen numbers correspond to the outputs of step 7a for the sixteen indicated

values of/kep in note I, in the order stated. The third and fourth lines of

16 numbers forE3 0 correspond to step 7b and the noted variations in _rp.

The same applies for the fifth and sixth lines and step 7c.

4.8 Alternate Counter Investigation

As part of this study, the feasibility of increasing accuracy by includir !

alternate counters at the output of the (03 - ()P) differential or at the output of

the (03 - _p) cosine mechanism was investigated. The idea was to minimize

error by bypassing these components on step 2 when _3 is matched to Qp.

Similar counters were investigated for the operations of step 4 where _)1 is

equated to _)a = O p + 180 ° . However, since it was found that no improvement

in accuracy could be obtained (due to the fact that the cosine function is insensiti"

to errors around zero and 180 ° anyway), details and results of this investigation

have been omitted in this report.
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5. RESULTS OF ACCURACY ANALYSIS

The results of the accuracy analysis for the twenty-four cases

studied are presented in Figures 5-1 to 5-Z4. All computations and

combinations of the errors presented have been accomplished in the

manner described in Section 4. All results are based on 1 values.

These twenty-four sets of results are based on four representa-

tive trajectories chosen from a group of 14 translunar abort trajectories

simulated by NASA, Ames. The trajectories chosen are numbers I, Z,

5 and 14 with initial abort eccentricities and radial distances from the

earth, respectively of 0.80, 0.88, 0.93, 0.99; 40, 000 km, 90, 000 kin,

180, 0O0 km, 355, 000 krn. Results from trajectory number 1 are

given in Figures 5-1to 5-3 and 5-13to 5-15; those from trajectory

number Z are given in Figures 5-4to 5-6 and 5-16to 5-18; those from

number 5 in Figures 5-7to 5, 9 and 5- 19to5-21; and tl_ose from number

14 in Figures 5-10 to 5-1Z and 5-ZZto 5-24. A three digit identification

has been assigned to each problem. The first digit of the problem

number indicates the number of the abort trajectory.

The results are presented in two groups as indicated by the sec-

ond digit of the problem number. Group 1 results are contained in

Figures 5:1 to 5-1Z and group Z in Figures 5-13 to 5-Z4. Each group

contains three cases from each of the four trajectories. The group 1

problems have fixed corrective maneuver and third observation points

for each trajectory while the first and second observation points are

varied. For group Z, the first observation point is fixed for each

trajectory, while the second and third observation points and the cor-

rective maneuver point are varied. For each trajectory, the first

case presented from group 1 is identical to the first group Z problem

and therefore there are really only Z0 different cases presented on

figures 5,1 through 5,Z4. The location of the various observational

and corrective maneuver points for all cases is given on Figure 4-4
in Section 4.

The data in Figures 5-1 to 5-24 are presented in three categories

of perigee errors. The first column contains the errors assuming no

corrective maneuver computation. The second column gives the



incremental errors due to the computation of the corrective maneuver.

The third column gives the RSS combination of the first two columns

and represents the total error with a maneuver computation.

Four types of errors are presented_ two of which are due to

errors in concept and two of which are hardware type errors. The

concept errors are (1) the two body vs. four body and earth oblateness

effects and (Z) the error due to the parabolic assumption for the

corrective maneuver. The hardware error.s are divided into errors

in the observations and the instrumentation errors. The seven listed

observational errors are based on the schedule of errors given in

Figure 4-8. The sources and magnitudes of the thirty instrumentation

errors are given in Section 3, Figure 3-4.
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6. DISCUSSION OF THE ACCURACY ANALYSIS RESULTS

Graphs of the total errors in perigee for each problem of Section 5

versus the angular difference between the first and third observations

{_3 - 4_1) are shown in Figures 6.l. to 6_4. Figures 6-1 and 6-Z are the

plots for the Group 1 errors in perigee radius and angle, and 6_3 and

6_4 are those for Group Z. Ali data presented are based on I 6 values.

The data for the Group I errors shown on Figures 6_I and 6._ indicate

a very clear cut relationship between total error and the total sweep angle

over which observations are made. These curves present the overall

effect of starting to make the observations later on the trajectory with the

locations of the last observation and the corrective maneuver fixed. It

should be noted that all the points fall on a single curve very closely despite

the facts that:

(a) the data was taken from four different trajectories whose

eccentricities vary from 0.80 to 0.99 and

(b) the locations of the second or middle observations wer_ for the

various cases, only approximately at the center of the sweep angle

between the first and third observations.

Preliminary studies of accuracy had indicated that the optimum selection

for the middle observation is at the sweep angle midpoint. Slight deviations

of the location of this second observation from optimum has only a small

second order influence on overall accuracy. In all the cases presented,

the actual location of the second observation was generally only roughly at the

angular midpoint between the first and third observation. (See Figure 4-4

in Section 4.)

The overall accuracy results for the first group of cases (Figures 6_1

and 6.-2) clearly show that accuracy is significantly enhanced by making the

first observation as soon as possible. Similarly, as shown on Figures 6-3

and 6-4_ the data from the Group 2 errors clearly show that accuracy is

significantly enhanced by making the third observation as late as possible.

For this latter group, families of curves have been drawn on Figures 6-3

and 6_4, each curve corresponding to the data for each trajectory. With

each trajectory, the first observation is kept fixed and the corrective maneu-

ver point is altered with corresponding changes in the second and third obser-

vational points. For the purpose of comparison, the curves of Figures 6,1.
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and 6-2 are repeated on Figures 6-3 and 6-4 respectively as dashed lines.

Thus, as is shown on all these curves, while it is critically important

to have the spread of observatior.s over as large an angle as possible,

accuracy of perigee radius is influenced even more by the location of the last

observation than it is by the location of the first observation. Of course,

choice in selecting the point for the third observation is very much limited by

practical considerations governing the time required to prepare and execute

the corrective maneuver, the amount of fuel a_'ailable_ and the time required

to prepare for reentry. It seems reasonable to require a minimum of thirty

minutes between the corrective ma_.euver and perigee and a similar minimum

interval between the third observation and the corrective maneuver. These

limits correspond to the points sei'ected in Group 1.

It is obvious, from the Group 2 restfits, that: accuracy is degraded con-

siderably as the time for the corrective maneuver is made earlier. The de-

gradation is the direct result, primarily, of having to move back the time

of the third observation by a c:orrespondi.r,.g interval.. This is clearly shown

on Figure 6,5 which shows the relatior.ships, for the four trajectories,

between total error in perigee radius and the time between the last observa-

tion and perigee.

Certain genera], conc!o_sions may be made regarding the overall accuracy

capability of the manua], computer. The accuracy is better with the lower

eccentricity abort trajectories simply because it allows for a wider sweep

angle for the observatior:s. For _ = 0.80, the best overa)l perigee

accuracy of about 16 km was obtained.. The most nearly parabolic trajectory

{ _ = 0.99} gav'e av.. accuracy of about: 40 kin. For this trajectory, the

first measurement was {arbitraril'y} iimit:ed to be w_thin 2.00,000 km of the

earth which in turn resu].ted in only about 4.76 km error due to the two body

theoretical basis for the cumputer. By allowing this latter error to be

greater and therefore making the first measurement further from the earth

{260,00 km}_ about four more degrees of total sweep angle would be obtained

with near parabolic trajectories. This would improve the accuracy to about

35 km. {See Figure 6,I}.

Thus, overall_ accuracy of from 16 to 35 km in perigee radius is obtained.

This is total error, includi.ng both perigee and maneuvering computations,

both equipment and theoretical model errors and both input data and computer

mechanization errors. Consider, for representative cases, the composition

of the total error in perigee radius. For this purpose_ take cases 1.1.I,

5.1.1, and 5.1.3. These are summarized on Figure 6-6.
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Error Category

Assuming

no

Maneuver

Two body vs four body
and earth oblateness.

Ob s er vational

Ins tr umentation

Total- no mane uve r

Error in Perigee Radius (Kin)

Problem No.

1.1.1 5. I.1 5.1.3

3.74 4.59 3.01

1.47 2.77 4.27

II. 43 ZZ. 44 34.30

12. II 23.07 34.70

Increment

due to

Maneuver

Computation

Observational

Instrumentation

Par abo]ic As s umption
of Corrective Maneuver

Total-increment

I. ZO I. 21 I. 23

9.06 8.77 8.83

0.60 0.24 0.15

9.90 9.98 9.41

With

Mane uve r
Observational _. 90 3.03 4.45

Instrumentation 14.58 24.09 35.42

Theoretical 3.79 4.60 3.01

Total 15.64 Z5.14 35.95

Figure 6-6. Error Composition in Representative Problems
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From an examination of Figure 6-6 _ some general facts are noted.

The instrumentation errors of the manual computer are the dominant

cause of perigee error. The instrumentation errors consistently cause

about eight times as much error in perigee as do the errors in the

observational input data.

The effects of the theoretical errors of the computer mechanization,

i. e., the two body assumptions in computing the vacuum perigee and the

parabolic assumption in computing the corrective maneuvers are consis-

tently small, between 3 and 5 kin. error in perigee. Besides, by means of

pro-computed tables, these effects couldp if necessary, be removed by the

operator in using the manual computer.

The incremental total error in perigee radius due to the corrective

maneuver computation is roughly the same for all cases, about I0 kin.

When added, RSS, to the perigee error assuming no maneuver, this affects

overall accuracy by only a small amount. For the largest error case shown

on Figure 6-6 (case 5. I. 3}, the net incremental increase due to the maneu-

ver is from 34.7 km to about 36.0 km or about 4%.

A detailed examination of the instrumentation errors indicated on

Figures 5-1 through 5-24 in Section 5 shows that error is significantly

contributed by the various components, both mechanical and electrical,

throughout the manual computer instrumentation. As would be expected,

almost all of the error comes from the components operating at one speed;

i. e_ input dials and gearing operating at high gear ratios contribute very

little error. By way of illustration, consider the instrumentation errors

assumming no maneuver for case S. 1.3 shown on Figure 5-9. All 30 errors

R.S.S. to a total error in perigee of 34.3 kin. Four of the errors contribute

more than 10 km each, two being mechanical components and two electrical

components. These components contributing most to the total instrumentation

error are: (1) a cosine mechanism; (Z} a rack differential driven by two

cosine mechanisms; (3) a potentiometer driven by a rack differential; and

(4) a rheostat driven by the differential of two reciprocal ranges. This

general breakdown of the instrumentation errors is quite typical of all 20 cases

presented in Section 5.

It should be noted that all of the four largest contributors to the instru-

mentation errors discussed above are components that are used to process

information taken at the second or middle observation. This is consistent

with the bre;_kdown of the effect of input data errors on the error in perigee

radius. Generally, input data errors from the second observation have a

greater effect than observational errors from the first and third readings.
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APPENDIX A

Manual Space Computer Error Analysis Program

Introduction

Pages 4 thru 23 of this appendix comprise the Fortran program written

to perform this Error Analysis. The following table describes briefly by

page and Fortran statement numbers the execution of the program.

Page s Statements Function

1 Thru Zl5 Read Inputs or Observation Points, Errors_

Run ID_ etc.

1 From Z 15 Initialization

Z to 391 Compute Theta, Cos Theta, Beta,

2-4 37-123 Select Error Source and Value from Input

Matrix

4-6 40-712 Compute Results Obtained by Manual Computer

6 72-766 Compute Perigee Radius of Corrective

Maneuver

6 77-78 Compute Miscellaneous Error Terms

779-8100 Save Those Results Needed for Summary

Output Tabulation

7-8 290-311 Write Detailed Output Tape

8 13Z- 135 Compute Galvanomete r Range and Ac curacy

8-9 5000-4145 Compute required Change in Velocity and

direction to achieve desired perigee

9-10 4150-1590 Write Output Tape

10-20 13999-End Write Summary Output Tape to Produce

RSS Error Tabulation

Following the program are the operating instructions required to compile

and execute the program.
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APPENDIX A

Manual Space Computer Error AnalTsis Program

Operating Instructions

I •

0

3.

@

This program may be compiled and executed on any IBM 7090/7094

with a 32000 word storage capacity.

The program is written in the Fortran II language.

The program reads input data from logical tape 5 and writes

output on logical tape 6 and ¢m the on-line printer.

The END card of the program is followed immediately by a DATA

card and then the following input information:

1 st card

Znd thru 43rd cards -

number of runs (1 to 99)

ten variations of each of twenty-one

error sources

44th thru 47th cards -

48th thru 51 st cards -

twenty variations to nominal perigee

radius used to determine the accuracy of

the galvanometer throughout its range.

twenty variations to nominal perigee

angle used to establish the required range

of the galvanometer.

5Znd card

53rd card

54th c ard

55th card

56th card

57th card

58th card

59th card

60th card

61st card

etc.

Problem identification (lst problem)

x, y, z, r of 1st observation point (KM)
" Znd " " "

" 3rd " " "

_' corrective maneuver point (KM)

" desired perigee point (KM)

quadrant of first observation point

problem identification (Znd problem)

x, y, z, r of I st observation point (KM)

" " 2nd " " "

Successive runs may be made by simply adding a set of seven cards per

run corresponding to cards 52 thru 58.
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APP END1X A

The field widths on these input cards are as specified by the format

statements in the program. (See statements 199, 200, 201, 202, and

215)

5. The program has three sense switches to control the output as desired.

.

5.1 Sense Switch 6 - When only this switch is down, just the RSS

summary output is produced. (See figure 5. I).

5.2 Sense Switch 5 - If only this switch is down, only the more

detailed output from which the RSS summary was derived, is

produced. (See figures 4.5, 4.9, and 4.14)

5.3 If both switches 5 and 6 are down, both of the above types of

output will be produced.

5.4 Sense Switch 4 - Normally the computer will halt after each

run to allow the operator to reset switches 5 and 6 for the next

run. If switch 4 is down the computer will not halt between

runs. If many runs are to be made with the same type output
desired on each, switch 4 should be down.

When printing the output tape under program control, the printer should

be under the control of a computer which will recognize the following

carriage control characters in the first print wheel position.

1

Blank

0

+

Restore page before printing

Single space after printing

Double space after printing

No space after printing.
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MSCEA MANUAL SPAC_E CDRPUTER ERROR ANALYSIS

ERRIF(A)tAI(3600.eST.29§TT95)
ERR2F(A)-AIRP
ERR3F(AIBtC)--AeB/2.eCOSF(C)/SINI:(C)
D;RENSIGN RERP(36)_RETHP(36)_RERPP(36)_RETHPP(36)tRSS(41
DIMENSION BETA(6)tR(S),THETA(4)vX(S),Y(S)tZ(5)tCCSTH(6)w

1EP(3OtlO),THETAD(6)tEP22(16)'tEN(16|tDTP(16),GANNA(4),EP8(16]
CINENSICN ALPHA(3)tERRIFil),ERR2F(1),ERR3F(1)tlDRUN(4)
C]MENSIGN EP30116),DELP(16)
REAO INPUT TAPE 5,2151KCRUN
READ INPUT TAPE 51201ti(EP(J,K),_tltlO),Jul,21),(EP8(I)*I=I,20),

1(CTP[I),I'1,20)
1000 READ INPUT TAPE 5,1ggtIORUN

READ INPUT TAPE 5,2001iX(I),_iII,Z(IItRII_,I'I,GI,XPtYP,ZPtRP
READ INPUT TAPE 5t202tNOUAD

lgg FCRMAT (4A6)
200 FORMAT (4E18.3)
201 FORMAT (5E16.0)
202 FORMAT (11)
2O3FCRNAT (66H1 MAkIAL SPACE CORPUTER ERR

1DR ANALYSIS)
204 FCR_AT (1H tTBXqA6tBXSHPAGE I3//)
205 FDRMATilH t4E16.7)
206 FDR_AT (117H X (KM) Y (KM) Z |KM)

1 R (KM) THETA (DEG) CCS THETA BETA (CEG) I/)
20T FCRHAT(l18H ERROR THETA(P) R(P) THETA|C

1) R(A) THETA(P)P +DELTA RiP] -DELTA RIP)/ )
208 FCRMAT(GH ,7EIS°TI/)
209 FCRMAT (117H E(THP)PP EfRP)PP E(THC

1)PP E(THP) EiRP) E(THP)P E[RPIP /11
210 FCRMAT(6H EP(,I2,1H,,I2v4H) t?E15.7/1SH _7E15.7/

111
212 FCRMAT(SEIS.T)
213 FCRMATI3B_ DESIRED PERIGEE PCSITIO_ FOLLC_SIt)
214 FCRNA_ (6X4EIS°T_
215 FCRNAT [12)

CC_PUTE BETA, THE ANGLE SUBTENDED BY THE EARTH
NPAGE'O
P-1
RSS(I)'Co
RSS(21sD.
RSS|3)-C.
RSS(4)-O.
L|NESsO
E3"0
E13"0
EIS-O
E_tO
DRP'O
ERPP'O
RNOMlsO
T_C-O
THPsO
THPPeC
ETHPPP'D
ETi_PP_O

PAGE 1
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C

MSCEA MANUAL SPACE COMPUTER ERROR ANALYSIS

ETI'_-C
ETHPP-©
RE-6371o229
GC 101=1,4
G:AlqqA(1)= AIANF(RE/SGRTFiRtI)oe2-REeo2))
BETAII)=2.oGAIq_.A(I)
BETAII)sS2°29b-F795 • BETA(1)
CC_PUTE THETA, THE ANGULAR COORDINATE OF THE VEHICLE

1C T_ETA(X)=ATANF(SQRTF((R(X)eRP)ee2-(X(1)eXP+Y(|)eYPtZ(X)eZP)o•2)/
I(X|I)eXPeY||)eYPeZ(|)eZP))

CETERMXNE PROPER QUADRANT OF THETAS |F QUAD OF T_TA(I) IS GIVEN
I=1

1_ IF(THETA|I))X6t2Ot20
16 IFiNQUAO-3) 17t2St999
12 T_ETA|I)sTHETA(I)_3.16159265

GO TO.3C
2G IF|NQUAO-3| 30,999t21
21THETA(I)=-THETA(I)eG.2831853
25 THETA(1)=-ThETA(I)+3.16159265
30 CC 33 I=1t2

ALPHA(I)=ATANF(SQRTFi(R(IIeR(I÷I))eg2-(X(I)eX(Iel)eY(I)eY(Iel)
X+Z|l)eZ(l*l))ee2)/iX|Z)oX(Itl|_Y(l)eY(l_l)+Z(l)oZ(l+l)|)

IF (ALPHA(1))32t33t33
32 ALPHA||J=ALPHA(I)e3o16159265
3_ ;hEIA(Xel)=THETA(I)eALPHA(1)

I-1
IF (THE;A(143))36_,36

34 THETA(Ie3)=-TI-_TA(I+3)e6.2831853
GO TO 350

36 THETA(143)=-THETA(I+3)+3°14159265
390 O0 391 I=1.4

CCNPUIE THE COSINES OF THE THETA ANGLES
12 CCSTH(TI=CCSFITHETA(I))

3ql THETACI|)=ST._qS77q_eTHETAl|)
J=C
K=O
GO TO 4C

37 CC 12E J=lt28
38 CO 12E K'ltlC

GO TO (lOC,101tlO2,103,104tlOS,lO6,107tlOe,lOg,110,111t1121
1113,116,115,116,118,119,12G,121,1211,1212t1213,1214,162,1_4,166),J

100 E1:EPIJ,K)
GO TO 122

101EI-O
E2"EP(JtK)
GC TO 122

102 E2-0
E3=ERRIF(EP|J,K)|
GO TO 122

103 E3=C
E6=EP(J_K)
E14-E4
GO TO 122

104 E6-©
E14"0
ES"ERRIFIEPIJtK))

PAGE 2
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MSCEA MANUAL SPACE COMPUTEk ERROR ANALYSZS

E15-E_
GG TO 122

105 ES-O
E15-0
EE-EPiJtK)
GC TO 122

106 E6-O
E?-EP(JeK)
GC TO 122

107 ET=O
EE-ERRIF(EP(Jt_))
EE-ERR3F(E8_R(3)tGAF_A(3))
SAVE1-EE
GO TO 122

lOe Ee=C
E_=ERRIF(EP(J_K))
Eg-ERR3F(Eg,R|I)_GA_MA(1))
SAVE2=E9
El?uE9
GO TO 122

109 Eg=C
E19=0
EIOsERR2FiEP(J_K))
GO TO 122

11C EIC-C
E11"EP(J_K)
GC TO 122

111 El1-0
E12uEP(JIK)
GO TO 122

112 E12-C
EI3-ERRIF(EP(J,K))
GG 10 122

113 E13-C
E3-ERRIF(EP(3_K))
SENSE LIGET 1
GC TO 122

11_ E3-ERRIF(EP(3,K))
EEuC
SENSE LIGHT 2
GC TO 122

115 E3-0
EEsO
E]6mEP(JtK)
GO TO 122

116 E16-0
E17-EPlJtK)
GO TO 122

118 E17-O
Ele-ERRIF(EP(JtK))
E|e'ERR3F(E18_RI2)tGA_A(2)|
SAVE3-E18
GC TO 122

119 Ele-O
E2C-ERR2F(EP(JtK)|
GC TO 122

PAGE 3
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_SCEA PAKUAL SPACE CC_PUTER ERRCR ANALYSIS

120 ESsERRIF(EP(StK))
EIS=E_
E_-C.
El_sO.
E;©'©
SENSE LIGHT *
GC TO 122

121ESsERRXF(EP(SwK)|
Ell'E5

E16=0
SENSE LIGHT $
GC TO 122

1211E_-C
EIS-C
EI8=C°
KCE=I
GC TC 40

1212 _CB=O
EI8=O
EI=ERR1FIEPIE,K))
GC TO 4C

1213 EI=C
E_=ERRIF(EP(e,K))
E15=E_
GC TC 4C

121_ E_=C
EIS=O
E13=ERR1F(EP(8,K)I
GC T0 4C

162 E6=EP(6tK)
Ei6=E6
EI3=O
GC TC 4C

164 E6=C
EIE=C
E1C'ERR2F(EP(1CtK))
E2OuEIC
IFIEIC) 4C,128,40

16_ EJC=G
EEC=C
EI=ERR!F(EP(ItK))
ES=E3
EZS=E3
E13-E3
GC TO 4C

122 IFiEP(J_KI) 40.123.40
123 GO TO (12E,128,12e,128,128t128,128,128t128,128t128t128t12E,401

14C .128,128,128,128,4C_40t4C_40.4C,40e40_40t6C),J
CCMPUIE THETA(P) THP kITH KC ERRCR

_C C=1.
RR=i((C+ETI/I£+EIIIeIR(I)+Eq-RI3)-ESI/(IR(3I*ES)e(R(1)_Eq)|eElOl

l(C+E11I/(((C*EITI/(C+E111I*(RIlI+E19-R(Z)oE18)IitR(1|4El?)e(R(2)4
2E)8))+E20/(C+Ell))

1=1
TEP=AIAKF((E6e|C+E2)eCCSF(THET_(Ie2)+EI)-{C_E6)eCCSF(THET#(II+ES)-

PAGE 4
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_SCEA MANUAL SPACE COMPUTER ERROR ANALYSIS

4O9

410
411

41
42

IRR.[E16+(C+E12)eCCSF(THETA(I+I)+EI3)-(C+E14)*CCSF(THETA(I)+E15)))/
2(RRe((C+E12)eSINF(THETA(I+I)+E13)-(C+E14)eSIKF(THETA(I)+E_5))-
3(C+E2).SI_F(THETA(I+2)+E3)+(C+E4)*SlNF(THETA(I)+E5)))

E8"C
I# (J-Z3) 410,409,410
E3=O
IF (TEP) 411e41,41
1_P'TEP+6.ZE31B53
IF(SENSE LIGHT 1) 43,62
IF(SEnSE LIGHT 2)44,45
E3-ERR1F(EP(J;K))
GC TO 4E

46 E_-C
E6=ERRIF(EP(JtK))

SUESTITUTE THP FOR THETA(3) AND SOLVE FOR RPC
65 A.((C+ET)e(CeEI1)e((C+EIZ)eCCSF(THEIA(I÷I)+E13-THP)-(C+E14)eCOSF

l(1_ETA(1)+E15-THP)+E16*COSF(THP)))/((C+E17)*(C_E1)e|((R(1)+E19)-
2(R(2)_E18))/((R(2)+EleI*(R(1)+EI9))+E20/(C+E17))e((C+E2)*CCSF(E3)
3-(C_E6)*CCSF(THETA(1)+E§-THP)+E6eCCSF(THP)))

RPC=-E84((C+ET)*(Ril)+Eg)*A)/((R(1)+E9)*(C+ET)+(C+ET-ElO*R(1)
1-EICeEg)*A)

EIE=C
IF(NGE) 452.452,451
EIE=ERRIF(EP(1E,K))
EIE=ERR3F(E18.Ri6).GA_PA(4))
SA_E6=E18
IF(E1E) 452,128,652
IF(J-25) 655,656,455
E13=O
CRP=RP-RPC
CO,PUlE A_GULAR POSITION OF CORRECTION POINT
E-(((C+ET)I(C÷E1))e((R(1)+Eg°RPC-E8)/((RPC+E8)e(R(1)4EgI))4E1OI

l(C+E1)).(C+E12)I(((C+EI7)I(C+Ell))*((R(I)+E9-R(4)-Ele)/((R(1)+Eg)u
2(R(SI+EI8)II÷E20/'tC+Ell))

CT_C=((C+E2)*COSF(E3)-(C_E4)*COSF(T_ETA(I)+ES-THP)_E6*CCSF(T_P))/8
l+(C+EIk)eCCSF(THETA(I)÷E15-THP)/(C+E12)-E16*CCSF(TFP)

STHC=SQRTF(C-CTHCe*2)
THC=ATA_F(STHC/CTHC)
E_'C
Elg'0
IF(J-24) 46C_657,660
E_=C
E1.5=0
IF(THC) 46,47,47
TEC--THC+3.t4159265
GC TO 48

67 TEC=-THC_6.28_185_
4E T_C'THC-E13eTHP

IFITHC-6.2831853) 52.50_50
50 T_C=T_C-6o2E31853
52 IF(SEnSE LIGHT 3)55t53
5_ IFISE_SE LIGHT 4)57,62
55 ES-ERR1F(EPIJ,K))

E15=E5
GC TO 62

57 ES=C

451

452
454
655

457

46C
46
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_SCEA MAkUAL $PAC_ COMPUTER ERROR ANALYS|S

C
77

771

7711
772

7721
7722

E15"0
E16"ERRIF(EP(J;K))
E6"EI_

C C_MPUTE RADIUS OF APOGEE
62 C_(C4E11)eIiC+E12|eCOSFiTHC+EX3-THP)-IC*EI4)eCOSFI3o161592654E15|

14E16eCOSFI;HPII/I(C*E.1)e|(C÷E2)eCOSF(E3)-(C÷E4)eCOSF(3.14159265t
2ES)tE_eCOSF(THP)))

RA:(De(C_ET)-(G_E17))I(E10eC-E20+De(C_ET)I|RP¢4EE)-(C4E17)/
l(R(*I4EE))-E9

6_ IF(RA-2COCOOOOC.) 65,67,67
C C_ANGE APOGEE AND PERIGEE BY DELTA R AND COMPUTE THPP

65 F-(IC_EIT)e((R&-ORP _E19-R(6)-E181/iiR(6)+E18)e|RA-DRV 4E19)))
14E20)/((C_E7)e((RA-DRP _Eg-RPC-ORP -EE)/_(RPC_DRP_E8)-(RA-
2CRP 4Eg)))*E10)

GO TO 69
_7 SENSE LIGHT 1

GO 70 65
69 CTHPP_(Fe(IC_E1)I|C_Ell))ei|C÷E2)eCCSF(E3)-(C÷E4)iCOSF(3.14159265

14ES)4E6aCGSF|THP))e(C4El*)eCCSF(3.14159265*EIS)-E16eCGSF(THP))
21(C*E12)

STHPPsSCRTF(C-CTHPPee2)
T_PP-ATANF[$THPP/CTHPP)
IF(THPP) 70t711,711

70 1_PP=THPP43.1615?265
GO TO 711

711T_PPsTHPP_T_C*E13
IF(T_PP-6.28316S3) 72t7121712

712 T_PP=THPP-6.2831853
72 IF(RNDM1)76t75,76
75 RNOMI"RPC

R_O_2uTHC
R_CP3=RA
RNDM6_TFPP
RkG_-I_P

C CC_PUTE C_AhGE IN PERIGEE
7_ G-(COSFIR_CV2-THPP)*I.)/2.

IF (SENSE LIGHT 1) 766-t765
765 BE:RNCMI-RNCK34R(q)e(C-2°oG)

CC=-(RNO_lm(R_C_3-R(4I)-GeR(4Ie(R_CP3"-RNCM1))
CRPFIm-EB/2°- S_RIF((_B)ee2-6oeCC)/2o
CRPPL'-B6/2._ SQRTF((_O)oe206.eCC)/2.
GC TG 77

766 £RPKIER(4)eG-RPC
CRPPL:C
_ISCELLANECUS CALCULATIONS
IF(RNCP-3.14159265) 7711,7711_771
El_PPPnRNCK-6.2831853
E_ TO 772
ET_PPP=RNO_
ERPPP:-RP*RNC_I
1"1
EIHCPP-RNO_2-THETA(I*3)
ETHP-THP-RNCK
IF(ETHP) 7721,773_7725
IF(El_P*3.1_lS926_) 7722o773_773
ET_P=E1hP46.2831853
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MSCEA MANUAL SPACE CC_PUTER ERROR ANALYSIS

GC TC 773
7725 IFKETEP-3.14159265) 773t773,7727
7727 ETHP-ETEP-6.2831853

773 ERPuRPC-RNOF1
ETHPP=T_PP-P.JWON4
IF(ETHPP) 774_778t776

774 IF(ET_PP*3.14159265) 775t778t778
775 EIHPP=6.2831853*ETHPP

GC TO 778
776 IF(ETHPP-3oX4XS9265) 778t778t777
777 ETHPP=ETHPP-6.2831853
778 ERPPuCRPMI+ERPPP

78 CI-57.2957795
T_CmCleTHC
THPaCZeTHP
THPP=CleThPP
EIHPPP=CleETHPPP
ETHCPP=CleETHCPP
ETHPuCleETHP
ETHPP'CleETEPP
IF (SENSE SaITCH 6) 779t290

779 IF (J) 780tE1CCt780
780 GC TO (780C,8100,7820,8100,7840,7850,8100,7870,7880,7890,8100,

1810G,T920t8ZoOtelCCtTgSCtElOOtTgTO,7980tElOO,8100t8020,8030,80_C,
28C50,£060,8070,8080),J

7800 GC TO (82CO,81CC,8100telOO,810C,8100,8100,810C,81CO,8100),K
782C GC TO (82CC,8100,8200
7860 GC TO (820C,81GC,8200
7850 GC TC (E200,81CC,E200
7870 GC TO (8200,8100,8100
788C GC TO (82C0,8100,8100
7890 GC TO (82CC,8i00t8200
7920 GO TO (820C,8100,8200
7950 GC TO (82CC,810988200
7970 GC TO (8200t8100,8100
7980 GO TO (8200,8100,8209
8020 GC TC (82C0,8100,8100

8030 GC TO (8200,8100,8100
80kC GC TO (82CC,8100,8100
8050 GC TO (820088100,8100
8060 GC TO (82CC,8100,8100
807C GC TO (8200,8100,8100
8080 GC TO (82GC,8100t8100
8200 RERP(E)=ERP

RERPP(M)=ERPP
RET_P(M)uETHP
RETHPP(_)=ETHPP
M-_41

8100
290
300

305

t81CC,EZCO,8100,8100_8100,810C,EZOO),K
,8100,8200,810C,8100tBlOO,810O,8100),K
,8100,8200,8100_8200,8100,8100,8100),K
,810C,8100,8100,8100,8100,8i00,810C),K
,81QO,8100,810C,8100,8100,81OO,8100),K
,81COp8200,810C,8200,810C,810C,810G),K
,8100,EZCC,81QC,8100,810O,81CC,8100),K
,8100,8200,8100t8ZOO,810C,810Oe'8100),K
,81GC,81CO,SIOC,8[00,810G,8100,81OO)tK
,810Q,8200,810Ct82O0,8100,8100,8LO0),K
,E1C0,81O0,810Ct8100,810O,81OO,81C0),K
,8100,810G,8100e8100,810C,81OOt8iCC),K
,8100,8100,810G,8100,8100,8100,8100),K
,8100tSIOO_8100tBI00,810OeBI00,8LO0),K
,8100,8100,810Ct8100,8100,8100,8100),K
_8100,8100,8100,8100,8100,8100,8100),K
,8100,8100,8100,8100,8100,8100,8100),K

IF (SENSE SWITCH 5) 29_,80
IF(LINES-2) 300,300,312
NPAGE'NPAGE+I
WRITE OUTPUT TAPE 6,203
WRITE OUTPUT TAPE 6e2C4,10RUNtNPAGE
L)NES-2
IF(NPAGE-I)305,_05,31C
WRITE OUTPUT TAPE 6t2Ct
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MSCEA MANUAL SPACE COMPUTER ERROR ANALYSIS

5CCC
510C

52CC

5205
_207

521G
5220
523C

kRITE OL_PUT TAPE 6,2CEt(X(1)eY(I)tZilIeR(I)eT_ETaC(1)ICCSTH(I)I
I£ETA(I),I'I,_)

kRITE OUTPU1 TAPE 6,213
kR|TE OUTPUT TAPE 6w214,XPtYPtZPIRP
_C TO 3C0

31C LINES'LINES_2
kR|TE OUTPUT TAPE 6,2CT
kR|TE OUTPUT TAPE 6,2Cg

312 kR|TE OUTPUT TAPE 6t21CIJ,K_THPtRPCeTHCtRA_THPPtCRPPL,CRPMIt
1E1hPPP,ERPPP_ETHCPP_ETHPtERPtETHPPtERPP

L|NES'LINES*3
IF(LINES-_)SC,e©,311

311 LINES'C
eO IF(J-l) 3Tt128,12e

128 CCNT]NUE
99g GC TO. 1_2
132 £C 135 1"1,16

J=l
_=R(1)eRi2)eiCOSF(THE;AiJ_I)-R_C_)-CCSF(T_ETAiJ)-PkCFI)/{R|I)-

1R(21)
EP22(l)-H-IRNC_I_EPS(]))eR(1)o(C-CCSF(T_ETA(J)-R_C_))/(R(;)-

1R_O_l-EP8(1))
CELPiI)=ERRIF(OTP(I))
_P=R(1)eR(2)o(CCSF(THE1a(J41)-R_C_-CELP(1))-CCSF(T_ET_|J)-CELP(1)-

1R_O_I)ItR|I)°R{2))
EP3C(II=_P-R(1)_R(_)*(C£SF(THE]A(J+2)-CELP(I)-RKC_)-CCSFIT_ETA(J)-

1CELPII)-R_O_II/(R(1)-R(3|)
13_ £k(])-R(1)oRNC_le(C-CCSF(THETA(J)-R_OM-CELP(II))/(R(1)-RNCP1)-R(1)

leR(2)e(CCSF(THETA(J*I)-R_CP-OELP(]))-COSF(THETA(J)-R_C_-CELP(I)))/
2(RI1)°RI2I)

R_C-ST._gSTTgS
RA=RNCM3
RC=R(4)
APP_RP
RP=RNC_I
ThA=R_C_.161Sg26_
IF (T_A-6.2831853) 52CC,$10C,5100
I_A=T_A-6.2e31E53
GC TC 5000
T_AC:THA_RAC
T_C'RkOY2
T_CO=RNG_21RAO
TFP=RNC_
TFPC=PNC_RAC
T_PP_RNC_4
TtPP_'RNOF4eRAO
$_'._g861_SE6
£RP-RPP-RP
C1_P'THPP-TKP
IF (CTHP) 521C,$23Ce52C5
IF (DTKP-3.161592E5) 5230,5230,52C7
CTHPsCTI_O-6.283165_
GC TO 523C
IF (CIHP+3.141592_S) 5220,5230,5230
DTHP=CT_P+6.28318_3
_THPD:DTHPeRAO
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MSCEA MANUAL SPACE CCMPUTER ERROR ANALYSIS

CPH|uABSF(.SeOTHP)

AA-RA4RP

A-.SeAA

_-(RA-RPI/AA

THCNPIT_G°THP
5240 ZF (T_C_P) 525G,S260oS26Q

5250 T_CMP-THC_Pe6.2831853

GO TO 5240

_260 T_C_PCuTHCMPeRAD

£SPC-SQRTF((I.eEQCOSF(THCMP))/(2.-(RC/A)))

SNPCuS_RTF(;°-CSPCgCSPC)

PHIC'ATANF(SNPC/CSPC)

PHICOsPHIC*RAD

PCPBOu°Se(THCMPO°180.)

_C'SGRTF(S_Ue((2./RC)-(1./A)))

VHC-VCeCSPC

_RCmVCeSNPC

VRCC_(?C°-PCPBO|/RAO

VPARB-SQRTF(2.m(SE_/RC))

CELTAV:VPAREeDPHI

IF(DRF) 2CCC,3CCC,3COC

2CCC _RCPPP=_RC4(CELTA_uCCSF(VRCC))

VhCPPP-VHC-(OELTAV*(STNF(VRCC)))

GC TC 4CCC

3GOC VRCPPPsVRC-(CELTAV*CCSF(VRCC|)

_ECPPP-_HC÷(CELTAVeSIhF(VRCC))

40C0 VCPPP-SCRIF((VRCPPPeVRCPPP)_(VHCPPPaVhCPPP))

EPPP=RCeV_CPPP

APPP=(RC*$F_)JII2oeSHU)-(VCPPPmVCPPFeRC))

EPPP-S_RTF(|o-((HPPP*_PPP)/(S_UeAPPP)))

RPPPP=APPPe(1.-EPPP)

SLPPP'APPP_(I°-(EPPP*EPPP))

ERPPPP=RPPPP-RPP

TCPT:(SLPPP-RCI_(RCeEPPF)

TCPPPP-RA_*(ATANF((S_RTF(1.-tTCPTeTCPT)))/TCPT))

22 [F(TCPPPP) 23t24_2_
23 TCPPPP=-TCPPPP÷18C°

GC TC 26

24 ]CPPPP_-TCPPPP÷36C.

26 ETPPPP:T_CD-THPPC

4100 IF (ETPPPP) 411Co4120e4120
4110 ETPPPP-ETPPPP÷360.

GC TC 410C

4120 ETPPPP-ETPPPP-TCPPPP

IF (ETPPPP) _14Ce4150o4130

413C IF (ETPPPP-18Co) 4150,4159,4135
4135 ETPPPP=ETPPPP-36C.

GC TO 415C

4140 IF (ETPPPPt18C.) 4145oAlSOt4150

4145 ETPPPP-ETPPPPt360°

4150 NPAGE-NPAGE41

fF (SENSE S;[TCH 61 4152,4153
4152 IF (SENSE S_ITCH 5) 6153,13_99

4153 kRITE OUTPUT TAPE 6t212,(E_(1),IzI,16)_(EP22(1),I=l,16),
1(EP30(1),1=1,16)

_RITE O_TPUT 1APE 6,2C3
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_SCEA MANUAL SPACE COMPUTER ERROR ANALYSIS

kRITE OUTPU1 TAPE 6t2CGtlCRUKv_PAGE
kR[TE OUTPUT TAPE 6,216
kRZTE OUTPUT TAPE 6e22©
kRITE OUTPUT TAPE 6t22S,RAtRCtRPtRPFtTI.IJCtTHCCtTHPOtTHPPC
HRITE OUTPUT TAPE 6,23C
kRITE GUTPUT TAPE 6t24C
kRITE OUTPUT TAPE 6,245tORPIAtE,S_UtOPHItCTHPC
kRXTE OUTPUT TAPE 6t25C
kRITE OUTPUT TAPE 6,260
hRITE OUTPUT TAPE 6,265,CSPC_S_PCtPHXCCtPCPBCtTCPPPPtETPPPP
kRITE OUTPUT TAPE 6,270
kRITE OUTPUT TAPEGt2TStVCtVCPPP,VHCoVHCPPPtVRCtVRCPPPIVPARB_CELTAV
kRiTE OUTPUT TAPE 6,28C
kR|TE OUTPU1 TAPE 6t285,APPP,EPPPIHFPP,SLPPPePPPPPeERPPPP

216 FCRMAT(1HC,53X13HINPUT SUmmARY)
22C FCRPAT(_HC,119H R(A) K_ R(C) KF R(P) K_ R(P

lip KM TKETA(A) OEG THETA(C) CEG THETA(P) CEG THETAiP)P C
2EG)

225 FCRRAl(SE15.7)
230 FCR_AT(1HOt63X32HI_PUT CALCULAT|O_S AK0 CONSTANTS)
260 FORMAT(iHOt11TH CELTA R(P) KF A K_ E

1 PU K_3/SEC2 CELTa PHI RAC CELTA THETA(P) CEG
2)

265 FCRMAT(E17.TtE19.TeGE2C.71/)
25C FOR_AT(1HC,53X16HCUTP_T SUMMARY|
26C FORPATIIHC,11TH CCSIP_I|C)) SIK(PHIIC)) P_ZIC)

1CEG PHI(C)PAB CEG THETAiCPIPPP CEG E(T_ETk(PIPPP DEG
2)

265 FOR_AT(E15.7,E21.Tt2E2CoTtE21.?,E19o7)
270 FORFAT(1HG,118H VC K_ISEC VCPFP KelSEC VHC K_ISEC VKCPP

1P K_/SEC VRC K_ISEC VRCPPP KFISEC VPAB K_/SEC CELV KMISE
2C)

275 FCRPAT(EE15°T)
28C FCRPAT(1HC,116H APPP K_

liSEC LPPP
285 FCR_AT(E17.T,SE20.T)

IF (SENSE SkIT£H S) 15gC,1599
1590 IF (SENSE SkITCH 6) 13_99e1599

1399S kRITE OUTPUT TAPE 6t16COC
16000 FCR_AIE1H1,STXITHERRORS |k PER|GEE)

kR|TE OUTPUT TAPE 6,1610C
16100 FGRFAT(76X66HASSU_XKG _C X_CRE_EKT DUE TC

kRITE OUTPUT TAPE 6w16161
141C1 FCR_.ATIT6XGOH_ANE_VER _ANEUVER CO_P.

_RITE OUTPUT TAPE 6,14200
1_200 FCRKAT(3OX12HERROR SOURCE,31X65HR_O|US AEGLE

1CIUS AKGLE)
kR|TE OUTPU1 1APE 6e16201

1_201 FOR_AT(74X_qHI_) (CEG| (X_) (CEG)
31002 COL1 = ERPPP

CCL2-ETHPPP
CCL3=ERPPP
COLG-ET_PPP
COL1 = ABSF(CCL1)
COL2 - ABSF(CCL2)
CCL5 " COL1

EPPP _PPP K_2
RiFiPFF KF Ei_[P_)FFP K_|

TOTAL _ITF )

PANEUVER)

RA[IUS A_GLE

IK_) ICEGI)

PA
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MSCEA MAEUAL SPACE CCMPUTER ERROR ANALYSIS

COL6 = COL2

kRITE OUTPUT TAPE 6t163GCtCOL1,C_L2tCOLStCCL6

14300 FORMATIIH TIH1. T_C BODY VS. FOUR BODY ANC EARTH CELATENESS

tFT.2,FB.StlTH _OT APPLICABLE tFT.gtFS.4)
_RZTE OUTPUT TAPE 6t1640C

16400 FOR_AT(1HCt71H2. OBSERVATIONAL ERRORS

1 )

0[ 18352 Ptlt36

GC TC (31004,31006,31008,31010,31012,31016,31016131018,31020,

131022131024131026t31028131030,31032,31036,31036t31038,310_Ot310621

231066t310¢6,3106E_31050t)lO52t31056131056,31058t31060t31062t31066t

331066t31068t310TOt31072_31076),P
31004 CCL1-RERP(32)

CCL2-RETHP(32)

CCL3-RERPP(32)

CCLT_RETHPP(32)

CGL1 " ABSFICCL1)

COL2 - ABSF(COL2)

COL3 - ABSF(COL3)

CCL¢ = ABSF|COLS)

ERITE OUTPUT TAPE 6,16500,CCLltCCL2,CCL3tCCL4

14500 FCR_Al(1H+p71H 2.1 U_CERTAI_TY I_ EEASUREEE_T CF C(1)

1 tF7.2_FS.4,FB.2eF8.6)

kRITE OUTPUT TAPE 6_1_¢50

1¢450 FCR_AT(1H ,3EXlH-)

GC 10 1E350

3100_ CCLI=RERP(3_)

CCLg-PETHP(33)

CCL3-RERPP(33}

CCLT=RETHPP(33)
CCL1 " ABSF(CCL1)

COL2 = ABSF(COL2)

CCL3 - ABSF(CCL3)

CCL¢ " ABSF(CCLT)

_RXTE O_TP_T TAPE 6tlq600_CCL1*CCL2eCOL3,CCL4

_¢600 FCR_AT(1He_71H 2*2 U_CERTAXhTY Xh _EASUREEE_T CF C(2)

1 ,FT.2,F8.4,F8°Z,F8oT)

kRITE OUTPUT TAPE 6t14450

GC TG 1E3_O

3100E CCLl=RERP(31)

CCL2"RETHPI31)

CCL3"RERPPI31)

CCLT=RETHPP(31)

COL1 - ABSF(CCL1)

COL2 - ABSF(C_L2)

COL3 = ABSF|COL_)

CCL¢ = ABSF(COLS)

kRITE OUTPUT TAPE _el¢?CC_COL1,CCLZ_COL3eCCL6
1¢TC0 FCRKAT(IH+,T]H 2.3 ._CERTAI_TY I_ _EASURE_ENT OF G|3)

1 ,FT.2_FB.4_FB.2.FB°4)

_RITE OUTPUT TAPE 6,16650
GO TO IE350

31010 CCLI=RERP(I_)

CCL2=RETHP(13)

CCL3=RERPP(13)
CCL4-RETHPP(13)
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CCLZ = ABSFiCGL1)
CCL2 - ABSFICQL2)
COL3 " ABSF(CQL3)
CCL4 w ABSFICCL4)
kRXTE OUTPUT TAPE 6tX48CCtCCLXtCOL2tCOL31CCL6

148CC FCRMAT(]LH e?lH 2.4 UkCERTA|hTY |k MEASUREKENT CF R(1)
1 ,F?o2,FBo4,F6.21FS.6)

GC TO 18350
31012 COLI-RERPiZS)

CCLX = ABSF|CCLI)
CCL2sRETHP(2S)
CCL2 - ABSFiCOL2)
CCL3:RERPP(25)
CCL3 - ABSF(COL3)
CCL4:RETHPP(25)
COL4 = ABSF(CCL4)
kRTTE CLTPUT TAPE 6t14_CCtCCLXoCCL2tCCL3tCQL6

169CC FCR_AT(IH ,?IH 2.5 _kCERTAT_TY |_ PEASURE_ENT CF R(2)
-1 ,FT.2,FB.6,FB.2tFE.6)

GO TO 1E3_C
2101. CCLisRERP(12)

CCL1 " ABSF(COLX)
CCL2-REIHP(12)
CCL2 = ABSF(CQL2)
CCL3=RERPP(12)
CCL) s ABSF(COL3)
CCL4-REIHPP(12)
CCL4 - ATSF(CCL6)
kRITE C_TPUT TAPE 6tISCOCtCCL1,CCLZ,CCL3,CCL6

15CGC FCR_AT(1H ,71H 2.6 UNCERIAI_T.Y lk MEASUREMENT CF R(3)
1 ,FT.2tF8°4tFB.21F8°6)

GC TO IE3_C
31016 CCL1-RERP(_C)

CCL1 - ABSF(CGL1)
CCL2=RETHPI_G)
CCL2 = ABSF(CCL2)
CCL3uRERPP(3C)
C_L3 : ABSF(COL3I
CCL4-RETHPP(_C)
CCL6 " ABSFiCCLA)
kRITE OLTPUT TAPE _II_ICC_CCL3tCCL6

1_10C FCRNAT(XH tTIH 2.T UNCERTAI_T_ Ik MEASUREVENT CF R|C)
1 . tl_H kCT APPL|CAELEtFE°2,F8o_)

RSS|I):CQLlee2_RSS(1)
RSS(2)=CCL2ee24RSS(2)
R$S(3):COL3ee2_RSS(3)
RSSiA)mCGL4Oe2_RSS(6)
COL1 : SQRTFIRSS(1))
CCL2 - SCRTF(RSS(2))
CCL3 - SQRTF(RSS(3))
CCL4 - SGRTF(RSS(4))
RSSI1)-C.
RSS(2)-C.
RSS(3)-C.
RS$I6)=C.
SaVEIuCCLI
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_SCEA MANUAL SPACE C_PPUTER ERRCR ANALYSIS

SAVE2-COL2

$AVE3=COL3

SAVE4=CCL6

CCL5 = SQRTF(CCLI*e2÷CCL3ee2)

C_L6 = SORTF(CCL2oe2+CCL6ee2)

_RITE C[TPUT TAPE 6t152CO,CCLItCCL2tCOL31C_L6,COL_tCCL6

1_20C FCR_ATi;HC,71H RSS

1 ,FT.2tFBo4tFB°2tF8*4tFeo2tFS.6)

kRITE OUTPU; TAPE 6,153CC

153CC FCRMA](1HC_TIH3. INSTRU_EKTaT|_k ERRCPS

1 )

GC TO 1E35C
31018 CCLI"RERP{5 )

CCL1 " ABSF(CCL1)

CCL2=RETHP(5 I

CCL2 = ABSF(CCL2)

CGL3"RERPP(_ I

CCL3 = ABSF(CCL3)

CCL4=REIHPP(5 )

CCL6 = ABSF(CCLk)

kRXTE O_TPUT TAPE 6,1E¢CCtCCLltCCL2,CCL3,CCL¢

1_6CC FCRMAT{l_÷,71H _.1 _CERTAI_TY l_ C(1) I_PUT GEARI_C A_C CIAL'R

lEADInG ,FT.2,FE.AeF8.2,FB.6)

_RITE O_TPUT TAPE 6,15350

1535C FCRVAT(XH ,23XI_-)

GC TC 1E3EC

3102C CCL1-RERP(IE)

CCL1 - ABSF(CCL1)

CCL2=RE]HP(iS)

CCLE = AESF(CCL2)

CCL3=REPPP(]E)

CCL3 = ABSF(CCL3)

CCL6=RETHPP(I_)

CCL_ = A_EF{CCL6)

WR[TE C_TPUT TAPE" 611E_CCtCCLI_CCL2,CCL3,CCL6

1_5CC FCR_AT{IH÷eTIH 3.2 _KCERTA]_TY 1_ C(2) INPUT GEARING A_C _IAL R

1EACI_G ,F7..2mFe.4_FE.2,F8.6)

_R[TE C_TPUT TAPE 6,1_3_0
GC TC 183EC

31C22 CCLI-RERP(2)

CCLI = ABSF(CCL1)

CCL2=REIHP(E )

C¢L2 = ABSFtCCL2)

¢CL3=RERPP{2 )

CCL3 = AESF(CCL3)

CCL6=REIHPP(2 |

CCL6 = ABSF(COL6)

kRZTE O_TP_T TAPE 6,1_6CC,CCLItCCL2,CCL3,COL6

IE6CC FCR_A1(1H4,TIH 3.3 [_¢ERTA]KTY 1_ C(3) I_PUT GEARI_G A_C C[AL R

1EAC|NG _FTo_tFBo6tFS°2_FS°6)

_R|TE O_TPU] TAPE 6,1E35C
GO TO 1635C

_1026 CCLI'RERP(3E)

CCL1 = ABSF(CCL1)

CCL2=REIHP(3E)

CCL2 = ABSF(CCL2)
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CCLT-RERPP(36)
COL3 - ABSF|CCL3)
COL4-RETHPP|36)
COL4 " ABSF(C_L4)
I_|TE OUTPUT TAPE 6,15TQO,C_LXtCCL2tC_L3tCCL_

X5?CC FOR_AT|XI'_tTXH 3.4 UI_ERTAXWTY |k O(P) XNPUT GEAR|_G AND DXAL R
XEAOXNG tFTo2eF|eEtF8.21FO.4|

kR|TE OUTPUT TAPE 6t15350
GO TO 18350

31026 COLI-RERP( 6l
£CL1 " ABSFICOLI)
CGL2sRETHP(6 )
CCL2 = AB$F(COL2|
CCL3"RERPP(6 |
COL3 " ABSF|COL3|
CCL4-RETHPP|6 )
COL4 : ABSFiCQL4)
NRITE OUTPUT TAPE 6,15eCC_CCl.ltCCL2eC©LT_COL4

1580C FCRMAT(1H4,TXH 3.5 UkCERTA|kTY 1W (C(X)-O(P|| C|FFERENT|AL
1 eFTo2eFB°_FB°2eF8°4)

NRITE OUTPUT TAPE 6_15750
1STSC FCRMAT(1J.I _24XEH- -)

GO TO 1E350
31o2e CCLI-RERP(191

¢CL1 • ABSF(CGL1)
CCL2=RETHP(19)
CCL2 " ABSF(CGL2)
CCL_sRERPP(;9)
COL3 : ABSF(CCLT)
CCL4sRETHPP(XQ)
COL4 : AESF(COL4)
_RITE OUTPUT TAPE 6tZ59COtCCLItCCL2tCOL39CCL4

159CC FCRMATilH4t71H 3.6 UNCERTAIKTY lk (G(2)-O(P)) CIFFERENTIAL
1 tF?.2tF6o4:FEo2,F8.4)

NAIVE OUTPUT TAP_ 6t157SO
GC 1C IE3SO

3|03C CGLI_RERP(3)
COL1 - AESFIC_L1)
CCL2-RETHP(_ )
COL2 • ABSF(CGL2|
CCL3:RERPP(3 |
COL3 - AESF(COL3)
CCL4:RET_PP(3 |
COL4 s ABSFiC_L_)
_R/TE OUTPUT TAPE 6eIEGO©t£_L|tC©L2eCOL3eCOL_

1600C FCRMAT(llt4,¥1H 3.T U_ERTAIkTY. |k |O(3)-O|P)) O|FFERENT|AL
1 ,FTo2tFBo4tF8.2tF8o4)

kRITE OUTPUT TAPE 6tlSTSO
GC TO 16350

31032 CCLXoRERP(T)
COL1 8 AESF(COLI)
COL2"REIHP(7 )
COL2 " ABSF(COL2|
CCL)sRERPP|? )
COL3 " ABSF(COL3)
CCL4:RETHPP(T )
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CCL4 = ABSFICCLq)
WRITE OUTPUT TAPE 6tlE1OOtCCLI,CCL2_COL3_CCL4

I_IGC FORMATIZH+eTXH 3.8 UNCERTA|hTY I_ (C(1)-OiP)) REOUCTION GEARING
1 .TO COS _ECHANIS_ _F?.ZtFE°EtFe.2tFEoE)

k_|TE OUTPU1 TAPE 6,15750
GC TO le350

3|036 CCLI-RERP(2C!
COL1 - ABSEICOL1)
£OL2-RETHP(20)
COL2 " ABSFiCOL2)
COL3-RERPP(20)
COL3 - ABSF(COL3)
CCL4-RETHPP(2C)
COL4 " ABSFiCCLE)
kR|TE OUTPUT TAPE 6,1620C,CCLI,CCL2,COL3,CCL4

16200 FORRAT(1H4t71H 3.9 UNCERTAINTY |_ (O(2)-CiP)) REDUCTION GEARING
1 TO COS _ECHANISM eF?.ZtFEo4tFe.2pF8oE|

WRITE OUTPUT TAPE 6t15TSO
GO 10 le)_0

31036 CCLI=RERP( _)
COL1 • ABSFiGOL1)
COL2•RETHP(4 )
COL2 • ABSF|COL2)
COL3"RERPP(6 )
COL3 • ABSF(CCL3)
CCLE=RETHPP(6 |
COL6 - ABSF(GOL4)
VRITE OUTPUT TAPE 6tI63CCtCCLI,CCL2tCCL3mCOL4

1_30C FORMAT(1H+t71H 3.10 _hCERTA|NTY Ik (C(3)-O(P)) REOUCTIOK GEARING
1 TO COS _ECHANZS_ tF?egtFEeEtFB°2oFE°4)

kRITE OUTPUT TAPE 6tlSYSC
GO TO 1E350

31031 CCLluRERP(34)
COL1 • ABSF(OCL1)
COL2•RETHP(34)
COL2 " AESFiCOL2)
COL3-RERPP(34)
COL3 : A6SF(GQL3I
COL4=RETHPP(34)
COL4 • ABSFICOL4)
_R|TE OUTPU1 TAPE 6t1640OtCCLltCCL2tCOL3_CCL4

166C0 FOR_ATilH4t71H 3.11 LKCERTATKT¥ I_ (O(1)-C(P|| COSINE MECHAKIS_
1 ,FT.21FEoE,FE°2,F8._)

WRITE OUTPUT TAPE 6t15750
GO TO le35o

31040 COLI=RERP(211
COLI _ ABSF(COLI)
COL2-RETHP(21)
£0L2 = ABSF(COL2)
CCL3=RERPPI21)
COL3 u ABSFICOL3|
COL4"RETHPP(21)
C_L6 - ABSF|COL4)
kRITE OUTPUT TAPE 6tI_SCCeCCLItCCLE_COL3tCCL6

1650_ F_RMAl|lH_t71H 3.12 _CERTA|KTY Ih |O|2)-O(P)) COSINE _EC_ANISN
1 ,FT.2tFB°4tFE.2tFE.6)
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kRITE OLTPUI TAPE 6elSTSO
GC TO 1E350

31042 CCLI=RERP(@)
COL1 - ABSF(CCLI)
C_L2=RETHP| 8)
COL2 s ABSFICQL2)
CCL3uRERPP(8 )
CCL3 = ABSFiCGL3)
CGL4-RETHPP_8 )
CCL4 - ABSF(COL4)
kR|TE O_TPUT TAPE 6tZ_6OCtCCLXtCCL2tCCL3tCCL6

1_6CG FCRMAT(1He_TIH 3.13 UKCERTA|_TY Ik (C[3)-O|P)) C_$|NE _EC_AkXSF
1 tF?°2tFSoGtF8o2eFSoG)

kR|TE OLTPU1 TAPE 6tXSTSC
GC TC 16350

31066 CCLI=RERPi9 )
CCL1 - ABSFiCCLI)
CCL2-RETHPiS )
COL2 = ABSFiCCL2)
CGL3=RERPP(_ )
COL3 = ABSFiCOL3)
¢CL6=RETHPP(9 )
CCL4 - ABSF(CCL6)
kRITE OLTPUT TAPE 6,167CC,CCLl,CCL2tCCL3,CCL6

l_TCC F_RPAT(1H+,TIH 3°16 U_CERTA|NTY |k CCSiC(3)-O(PII-COSiO|II-C|P||
1 OIFFERENTIAL tFT°2,FSo6tFB.2,F8o6)

kfllTE QLTPUT TAPE 6,16E50
1_65G FCR_ATilH t2?X21H .... )

GC TO 1E350
210_ C_LI=RERP(22)

COL1 = ABSF(COLX)
CCL2-RETHP|22)
COL2 " ABSFiCGL2)
C_L3=RERPP(22)
CCL] = ABSF(CCL3)
CCL6=RE1HPP(221
CCL6 " ABSF(CDL6)
kRITE OUTPUT TAPE _,I_SCCtCCL1,CCL2,CCL3tCCL_

1_80C FCRPAII:H+tTIH 3.15 L_CERTA|_TY lk CCS(((2)-CIP))-CCSIG(II-O(PI)
1CIFFERENIIAL tF?.2tFS.GIFG.2tF8.6)

kR|TE OLTPUT TAPE 6,16650
GC TC 1£350

31C6E CCLI=RERP(1C)
COL1 - ABSF(CQL1)
CGL2sRETHP|IC)
COL2 - ABSF(COL2)
CCL3:RERP_1101
COL3 " ABSFiCOL3)
CCL4sRETHPP(1Q)
COL6 • AGSF(CCLG)
kR|TE OUTPU1 TAPE e_I_gCCtCCL1,CCL2tC_L3tCCL6

1_9CC FCRNAT(1He_T1H 3.16 L_CERTAINTY |k CCSCC|3)-OiP|I-COS|O(II'-QiP|)
1P01CRIVE GEAR|_G ,F?°2_FO.6tF8°2tF8°6)

HR|TE OLTPUT TAPE 6,16650
G_ TO 1_350

31©5C CCLl=RERP(23)
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CELl • JBSFiCCLI)
CCL2•REIHP(23)
CQL2 = ABSF(COL2)
CCL3uRERPP(23)

_CL3 s ABSF|COL3)
CCL6=RETHPP(23)
CCL6 " ABSF|CCL_)
_RITE CUTPUT TAPE 6_17COCtCOLZtCCL2tCOL3tCOL6

17000 FCR_AT|lH_tTIH 3.17 UNCERTAINTY Ik CCS(C(2)-OIPll-COS(O(1)-C(P))
1 POT CRIVE GEARIKG tFT.ZtF8o6_F8o2_F8.6)

kRITE OUTPUT TAPE 6_1665D
GC TO le35C

31052 CCL1=RERP(11)
CCL1 = ABSFICCL1)
CDL2=RETHP(11)
CCL2.= ABSF(COL2)
CCL3=RERPP(11)
CCL3 • ABSFICCL3)
CGL4=RET_PPIZ1)
CCL6 • AESF(CCL4)
kRITE CLTP_T TAPE 6tl?10CtCCLltCCL2_CCL3_CCL6

17100 FCR_ATIIH+,71H 3.18 CCSIC(3)-CIPI)-CCS(C(1)-CIP)| PCT NCN-L|NEAR
lily eFT.2_FS.4tFS.2_FS.6)

bRITE OLTPUT TAPE 6t17C50
17G50 FCRPATIIH _12X21H .... )

GC TO ie3_c
31054 CCLl=RERP(24)

COL1 = ABSF(COL1)
CCL2-RElhF[26)
CCL2 = AESFICOL2)
CCL3=RERPP(24)
CCL3 s ABSFICCL3)
CCL6-REIHPP(26)
CCL6 = ABSF(CGL6)
WRITE CUTPUT TAPE E,17200vCCLl,CGLZtCOL3oCCL4

17200 FORMATIZH+,71H 3.19 CCSIC(2)-G(FI)-COS(C(1)-C(P)I PCT NCN-LINEAR
IITY eFT.ZIFS°4tF8°2_F8o4)

ERITE O_TPUI TAPE 6_ITCSG
GC 10 IE3_0

31056 CGLI=RERP(3E)
CCL1 - ABSFICDL1)
CCL2:RETHP(35)
CCL2 = ABSFICOL2)
CCL3=RERPP(351
CCL3 = ABSFICCL3)
CCL4•RETHPP(35)
CCL6 = ABSF(CCL4)
_RITE ObTPUT TAPE 6_173COtCCLItCCL2_COL3tCCL4

17300 FCR_AT(1H 71H 3o2C _hCERTAI_TY IK 1/R(1) INPUT GEARING A_C DIAL
1READING " _F_.2_FS°6_F8.2tF8.6)

GC TO 18350
3105E CCLl=RERP[26)

CCL1 = ABSFICOL1)
CCL2=PETflP(26)
CEL2 = ABSFICOL2)
CCL_=RERPP(26)
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COL) = ABSF(CCL3)
CCL4eREIHPP(26)
CCL4 = ABSF(COL4)
kR|TE C_TPUT TAPE 6eX?4COtCCLloCCL2tCGL3tCCL4

174CC FGRflATIXH tTXH 3.2Z U_CERTA|NTY Ik X/R(2) INPUT GEARING JUNO OgAL
I REAOXNG eFTo2eFOo4tFCe2_F8o4)

GC TO XE350
31C60 CCL|=RERP[143

CCLI • ABSF'ICGLI)
CCL2"RETHP||4!
CCL2 - ABSF(CCL2)
CCL3=REkPP(143
CCL3 - ABSF(CDL3)
CCL4=RETHPP(143
CDL4 = ABSF(CQL4)
_RITE.G_TPU1 TAPE 6,1750OtCCLX,CCL2,CCL3tCCL4

175CC FCR_A1(1H I?IH 3.22 U_CERTAIKTY Ih 1IRIS) I_PUT GEARING _NC DIJL
1 READING oF?.2,FB.41FE.2,F8.4)

GC TO 1E35C
21062 CCLl•eERP(153

CCL1 " ABSF(CCLI)
CCL2sREIHP(I_)
CCL2 " ABSF(COL2)
CCL3-RERPP(15)
CCL3 - ABSFiCCL3)
CCL4:RETHPP(_5)
CCL4 = ABSF(CCL4)
kR|TE OLTP_I TAPE _,17ECCtCCL1,CCL2,CCL3_CCL4

176CC FCRYAT(1H I71H 3.23 LkCERTAIKTY I_ (1/R(3)-l/R(131 DIFFERENTIAL
1 _FT.2,FBo4,FSo2tF8o41

GC TO IE3SO
31064 CCL1-RERP(ZT|

CCL| = ABSF(CCL1)
CCL2:RETHP(27)
CCL2 - ABSF(CDL2)"
CCL3:RERPPi2TI
CCL3 • ABSF(CGL3)
CCL4sRETHPP(2T)
CCL4 : ABSF(CGL4)
_RITE O_TPUT TAPE 6,177CC,CCLltCCL21CGL3,CCL4

17TCC FCR_AT(IH ,71h 3.24 k_CERTAI_T¥ Ik (L/Ri2)-l/R(1)) C|FFEREKTIAL
1 tFT.2,FSoq,FBo2.F8._)

GC TO IE350
310_6 CCLl•RERP(16)

CCL1 • ABSF(CCLI)
C£L2=RETHP(iC)
CCL2 - ABSF(CQL2)
CCL3=RERPP(16)
CCL3 = ABSF(COL3)
CCL4:RETHPP(16)
CCL4 : ABSF(CCL4)
kRITE O[TPUT TAPE 6tlTECCtCCLttCCL2:CCL3,CCL4

178CC FCR_AI(IH e?lH 3.2S LkCERIAIkTY Ik IIIR(3)-I/R(1)) R_ECSTAT CRIV
1E GEARING tF?o2_FS°4tF8.2tFC°4)

GC TO 1E350
31068 CCLI-RERP(2B)
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CCL| " ABSFiCCLI)
CCL2"RE]HP(28)
COL2 " ABSF(COL2)
£OL3"RERPP(28)
tOL3 - ABSFiCGL3)
COL4-RETHPP(28)
COL4 - ABSFiCGL4)
NR|TE OUTFUT TAPE 6,17qCCICOLl,CCL2tCOL3,COL4

17900 FGRMAT(1H ,71H 3.26 UKCERTAIKTY I_ (1/R(2)-l/R(1|) RHEOSTAT ORIV
18 GEARING ,FT.ZtF8.4,FS.2,F8.4|

GO TO le350
31070 COLI-RERP(17)

COL1 " ABSF(CCL1)
CCL2uRETHP(17)
COL2 - ASSF(COL2)
CCL3mRERPP(17)
£0L3 • ABSFiCCL_)
COL4"RETHPF(17)
COL4 " ABSF(COL4)
_RITE O_TPUT TAPE 6,1ECCC,CCLltCCL2,CCL3tCOL4

18000 FCRMATIIH ,71H 3.27 11/RI3)-l/R(I)) RHEOSTAT NC_-LI_EAR|TY
1 tFT.2tFSo4tFS.2eF8.4)

GC TC le3_G
31072 ¢CL1-RERP(29)

COL1 • ABSF(CCLI)
COL2"RETHP(29)
CCL2 " ASSF(CCL2)
CCL3-_ERPP(2S)
COL3 " ABSFICCL_)
COL4=RETHPP(2S)
COL4 " ABSF(CGL4)
WRITE O_TP_T TAPE 6t181CCtCCLltCCL2_CCL3tCOL4

lelCc FCRMAT(IH ,71H _°28 (1/Ri2)-l/R(1)) R_ECSTAT KC_-LINEARITY
1 tFT.2,FS.4tF8.2,FS.4)

GC TG 18350
31074 CCLlmRERP(1 )

CCLI • ABSF(CCLI)
COL2•RETHPiZ)
COL2 • ABSF(CCL2)
CCL3-RERPP(I )
COL3 " ABSFiCCL3)
COL4=RETHPP(1)
COL4 • ABSF(CCL4)
WRITE OUTPUT TAPE Et182CCeCCLItCCL2tCOL3tCOL6

18200 FORMAT(IH t71H 3.29 ERIOGE TRIKPI_G ERROR
1 tFTo2eFBo4tFS*2eF8o4)

kR[TE OUTPUT TAPE 6o18300
1E3CC FCR_ATIIH t31H 3.30 GALVAKC_ETER E|AS ERROPt66X3hN|LtSX_KNILt

1SX3HNILISX3HNIL)
18350 RSS(1)-COLlle2+RSS(1)

RSS(2|•CCL2ee2*RSS(2)
RSS(_)•COL3ee2_RS$(3)

18352 RSS(4)=COL4ee2_RSS(4)
COL1 - SGRTF(RSS(1))
CCL2 " S_RTFiRSS(2))
CCL3 • SQRTF(RSS(_))
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CCL_ • SQRTF(RSS(6))

CCL5 = SQRTF(CQLXQe2+CCL3ee2)

CCL_ " SQRTF(COL2ee2*CCL6at2)

WRITE O_TPUI TAPE _,184GCt£CLltCCL2,CCL3tCOL6,COLStCOL6

1E40C FCRKAT()HC,71H RSS

1 FT.2,FS.6,FB.2tF£.4,Fe.2,FS.4J

¢CL3 " ABSFiERPPPP)

COL4 - ABSF(ETPPPP)

CCLS•COL3

COL6=CCL_

WRITE GUTPUT TAPE 6,1ESOCtCOL3tCGL6tCOLStCCL6

;E§OC FCR_AT(IPC,?IH4. ERRORS DUE TC PARABOLIC _SSUPPTICN CF CORRECT

lIVE MANEUVER • ,1_ NOT APPLICAELEtFE.21FS.6eFS.21Feeq|

CCLI:SQRTFIRSS(1) +SAVEI*s2÷ERPPPe-2)

CCL2sS_RTFfRSS(2! +SAVE2eeZ÷ETHPPP-e2)

CCL3uS_RTFIRSSI3) ÷_A_E3ee2+ERPPPee2+ERPPPPme2)

CCL6=S_RTFtRSS(6) _SAVE6ee2+ETHFPFee2*ETPPPPee2)

CCL_ : SGRTFiCCLlte2_CCL3Qu2|

CCL_ = S_RIFiCCL21e2+CCL6oe2)

WRITE OLTPUT TAPE _,ZE_CC,CCLItCCL2tCCL3tCCL6,CCLStCCL_

1E6GC FCR_AT(ZHC,71_ TCIAL RSS ERRCFS

L tFT.2tFB.4tFB°2tFB°4_FB.2tF8.6|

WRITE CLIFf1 TAPE 6mlETCC

1E70C FCg_AI(IhC,gkF_CTE i. SCARCE ERRGR$ _TILIZEC ARE I SIGPA VALUES EA

1SEC Ok PAXI_L_ VALLES LISTEC Ih FIGLRE kC. )

WRITE GLTPCT TAPE 6,1eSCC,ICRUh

IE?OC FCR_AT()_C_gX)gPPAN_AL SPACE CCFPUTER ERMCR ANALYSIS • e_A6)

WRITE GLTFC1 1APE 6,L_CCC

I_CCC FCR_AT(_ _IXICHFIG_RE KC.)

15_ _OR_N=NCRC_-i

IF (SENSE S_ITCM _l 26CC2,26999

265_S PRINT 2_CCC

2_CCC FCR_AT(I_,_gbCPERaTCR ACTIC_ PA_SE s_ RESET SE_S-E SWITCFES 5 AEC

I _ ANE PUS_ START.)
PRINT 2_CCC,ICRL_

2_CCC FC_MAI(Z_C,EChEKC CF ARVA _AKbAL SPACE COMPUTER ERROR AKALYSIS e6

lA_)

PAUSE

26CC2 IF (NCRL_) 16C_16C_1CCC

_6C PRINT 2_CCC

27CCC FORMAT lib e15HEh& CF _RPA JC_I//)

CALL EXIT

E_C(lel_O,C,],C_I_leO,C_CeC,O_G,O!
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